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signers and field personnel concerned with off-road mobility.
Under these broad objectives, soil mechanics research is directed
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related to soft-soil conditions. The present study is concerned
with steady state two-dimensional flow generated by a driven
rigid cylindrical wheel moving in soft saturated clay, assumed
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NOTATION

Dotted symbols have dimensions. Undotted variables
are dimensionless: length by dividing with. r', veloclitles by Uo',

stresses by k' and forces by k'r!',

g Gravity acceleration
!
G = %%— Dimensionless gravity plastic number
h' Thickness of the plastic zcre at the bottom of
the wheel (h = h'/7')
th 13
H = ——Eg—— Dimensionless inertial plastic number; also hori-
zontal force acting on the wheel (H = H'/r'k')

Jo Bessel function of zero order
k' Yield stress (max. shear stress)
i,L Auxiliary lengths defined in Figures 17 and 19
M Torque on the wheel (M = M'/k'r'?)
n Direction normal to streamlines
p' Isotropic pressure (p = p'/k')
ol Wheel radius
r Radial coordinate
R Fesistance (R = E'/k'r')
s Direction alorig streamlines

Vo' - Uo'\
S Slippage coefficient [S = TR

w /

u',v' Velocity components in cartesian coordinates

fos N 0 /AKE0 - ' /11
(u = u /do )y W=V /Lo )

u Velocity 1in the plastic zore at the bottom of
thie wheel

bttt ool
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Translational veloclity of the wheel
Velocity modulus (V = V'/Uo')

Peripheral rotational velocity of the wheel

(Vw - Vw'/Un')

Veloclty components in characteristic directlons
Velocity components in radlal coordinates

Vertical force acting on the wheel (W = W'/k'r')
Cartesian coordinates (x = x'/r', y =y'/r')

Curvilinear characteristic coordilnates

Sinkage (z = z'/r')
Characteristic directions
Shearing strain

Velocity and shear stress jumps

Rates of strain

Auxiliary angle defined 1n Figure 19

Angle between streamline and x direction (in par-
ticular polar coordinate along the wheel)

Slope of characteristic directions
Soll density
Normal stress (o = o'/k')

Cartesian components of the normal stress tensor
Normal stress acting on the wheel

Principal normal stresses
Shear stress (T = T'/k')
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ABSTRACT

The steady two-dimensional flow beneath a driven rigid
cylindrical wheel moving in a soft saturated clay 1is solved by
assuming that the soll behaves like a rigid-plastic material.
The general equations of plastic flow are discussed, with empha-
51s on the inertial effects which generally are not negligible.
A plastic flow pattern 1s suggested and the quasi-static equa-
tions of flow are integrated in two regions of the plastic zone.
An approximate solution provides the magnitude of the recovery
angle, the vertical and horizontal forces and the torque acting
on the wheel as function of wheel radius, sinkage and shear
stress along the wheel (assumed constant on the bow portion).

A minimum slippage necessary to maintain the shear stress on
the wheel is found. The theoretical results are compared with

some existing measurements and the agreement 1is generally

satisfactory.
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1. INTRODUCTION

The capabllity of a vehicle to navigate in a soft soll de-
pends on the magnitude of the forces developed at the wheel
(or track) and soll interface. The prediction of these forces
as functions of the wheel geometry, soll characteristics and
wheel speed 1s necessary in order to design vehicles or to esti-

mate the mobility of a given vehicle under different conditions.

Unfortunately, at this stage of development of the art (see
Section 2) there 15 no reliable theory which can produce design
formulae. Moreover, even the fundamentals are not well under-
stood and similitude criteria which allow extrapolation of

model tests to prototype are not clearly formulated.

The purpose of this study 1s to solve in a basic way the
problem of soll flow beneath a wheel under some simplifying
assumptions., While existing approaches use empirical results
obtained from statlic tests of plates on the soll surface and ap-
ply them to the moving wheel, in the present study the whole
reglon of soll flow beneath the wheel 1s considered. The solu-
tion of the problem follows the lines of the classical applied
mechanics: the soll behavior 1s represented by material consti-
tutive equations, the stresses and veloclty flelds are inter-
related through the equations of motion and the particular
solution for the wheel 1s obtalned by integration with the ap-

propriate boundary conditions.
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Unfortunately, the difficulties encountered in such a type
of solution are formidable. The most Important of them is the
lack of a good mathematical representation of the soll behavior
in form of constitutive equations, i.e., relationships between
stresses and deformations., But even if some simplified consti-
tutive equations are adopted, the exact integration of the equa-

tions of motion 1n the wheel case seems impossible at this stage.

For the above reasons, in this preliminary study the problem
has been simplified by adooting the following assumptions: (1)
the soll behaves like a rigid-plastic incompressible material,
(11) the wheel is two-dimensional and rigid, (111) the motion
1s steady and (iv) the soll surface is plane and unperturbed
far from the wheel. Assumption (i) limits the applicability of
the results to soft clays with a high water content, although
even in this case the plastic-rigid model 1s a foregolng simpli-
fication. It may describe roughly the behavior of a saturated
undrained clay with a dispersed structure (Reference 1%, p. 369),
(Reference 7, p. 188).

Considering the highly empirical character of existing
theories i1t is felt that the present work, in spite of the above
simplifications, constitutes an important step forward in the
understandlng of soll-vehicle interaction. Thils 1s only a first
step, and the results obtalned so far encourage the contin-
uation of the study along the same lines, with steady improve-
ment and extension of results to more couplex conditions, like:
representation of soll as a work-harden‘ng material and incorpo-
ration of friction, consideration of three-dimensional wheels and

of unsteady motions, influence of wheel or track shape, etc.
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2. BRIEF LITERATURE REVIEW

The purpose of thls section is not to give a comprehensive
review of the publications in the field of vehicle-soll 1nter-
action, but a critical discussion of the most important contri-

butions, relevant to this study.

A, Theoretical Works on Soil Wheel-Interaction

The most known and applied theories of wheel-soil interac-

tion are those of Bekker and Uffelmann.

Bekker's theory (2), (3) 1s based on the following assump-
tions on development of stresses on the soll-wheel interface:
(1) The normal stress at a polnt 1s related to the wheel sinkage
at the same point. The relationship, known as Bernstein ejua-
tion, is obtalned emplrically by pressing plates 1n the soil and
representing the dependence of force on sinkage. (ii) The hori-
zontal resisting force to the wheel motion 1s a result of the
work done 1n compacting the soll and creating the rut. There
i1s no soil recovery beyond the wheel bottom. (1ii) The shear
stress along the wheel 1s computed by using the relationship be-
tween shear stress and deformation obtalned emplrically by pulling

a flat plate on the soil surface.

The soll layer adjacent to the wheel has an angular defor-
mation which 1s computed by assuming that on the wheel side the
speed 1s equal to the wheel rotational speed and or the soil
side equal to the translational speed. This nermits the deter-

mination of the shear stress as function of slippage and position.
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By using seven soil constants in the representation of the
empirical curves and some additional computational simplifica-
tions Bekker was able to calculate the forces acting on the

wheel by using the above assumptions.

The inconsistency of Bekker's theory when compared witl ex-
perimental results have been largely discussed in literature

{.ee, for instance, (19), (20)) and will not be repeated here.

From a basic point of view, Bekker's theory 1is an attempt
to apnliy results of measurements of forces on flat plates 1n
static conditions to moving wheels. There is no a priori
reason that such an attempt should be successful since the soll-
flow beneath a flat-plate is different from that beneath a
wheel. If we adopt the plastic-rigid model and observe the
plastic flow pattern beneath a footing (7), (8) and that be-
neath a rolling surface (1), (8) we will find that they are
different. Moreover, the normal stress at a certain point 1is

depending on the whole flow-field and not on the verti~al dis-

placement of that particular point. There is no theoretical
ground for the assumption of pressure-sinkage relationship along

the wheel.

The rolling resistance of a wheel cannot be attributed to
the soll compaction, excepting possible agricultural soils
with high content of air-filled pores. A soft clay with a high
water content is practically Incompressible and in a two-dimen-
sional case therc is no ultimate rut. There is definite evidence
of soil recovery at the rear with normal stresses contributing
to draw-bar pull (18), (22).



HYDRONAUTICS, Incorporated

-6-

The distribution of shear stresses along the wheel is dif-
ferent from that assumed by Bekker because a coll particle
moving along the wheel has veloclty gradlents depending again
on the whole flow-fleld &nd it starts to be sheared before i¢

reaches the wheel surface,

Concluding these remarks on Bekker's theory 1t may be sald
hat in spite of the progress marked by this theory in the quan-
titative representation of the soil-wheel interaction, 1t has

not clarified the mechanism of soil flow beneath the wheel,

Uffelmunn (18) has assumed that the normal stress on a
wheel 1s constant and equal to that under a static rough foot-
Ing in a plastic incompressible clay and he suggested the com-
putation of the wheel-resistance on thls basis. Again, because
of the different plastic flow patterns in the two cases, the
pressures are generally different. The normal stress is con-

stant on a footing, but varles along a wheel.

Reece and Wong (13) have refined Bekker's theory
by empirically relating the position of the point of maximum
normal stress on the wheel to slippage. Consequently the well-
krnown fact that the tangential stress influence the distribu-
tion of normal stresses 1s reflected by the formulae (fact
lgnored by both Bekker and Uffelmann theories). Again, this
generalization 1s based on some empirical data and not on the

analysis of the flow-fileld.
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In conclusion, there 1s no comprehensive theory of soll-
flow beneath a wheel., All existing approaches are empirical and
consider the soll-wheel interaction as a surface effect. They
ignore the stress and velocity distribution in the soll body. No

consideration has been given to inertial or strain-rate effects,

B. Experimental Work

The experimental works on soll-wheel interactions are dom-
inated by the same trend as the theoretical works: only forces

acting on wheels or stress distribution have been measured.

Experiments in which the flow-pattern of the soil has been
observed are reported in (21), (22), most of them being carried
out with sand. Because of the small dimensions of the experi-
mental soll bin and the low speed of the wheel, the quantitative
value of the results 1s questionable. Moreover, no stress measure-
ments - to be correlated with the kinematics - have been carried
out. Qualitatively, however, these experiments confirm beyond
any doubt that the dynamics of wheel motion is determined by
the soil flow beneath the wheel and not Just by a surface effect

at the Interface,

The stress distribution along wheels and the resulting
forces have been measured by different authors, but there 1s no
general agreement between measurements. For instance Uffelmann
(18) has found that the maximum normal stress acts at the bottom
of the wheel, while in (15) and (13) it has been found somewhere
forward near the bow. Any analysis is hampered by the fact that
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results are dependent on the type of soll and 1ts preparation.
Since generally there 1s no detalled description of the mechan-
ical behavior of the soll used by different experimenters

it 1s difficult to compare different results on a common basis.

The comprehensive measurement of forces on towed and
driven wheels by Cullen, Cullingford and Mayfield (5) gives some
qualitative trends as the decrease in flotatlon with slippage

at constant sinkage.

Some experiments are compared with the results of the

present work 1in Section 9.

In conclusion, there 1s an urgent need for careful experi-
ments in which both soll veloclty distributions and stress dis-
tributions along the wheel should be measured. These experiments
have to be carried out under thorough control of the soll be-

havior and respecting the 1lnertlal similitude requirements.

C. Theoretical Works on Rigild-Plastic Flow

Although trie present study relles on the rigid-plastic
theory, 1t 1s beyond our purpose to review the publications con-
sulted for thls study. The most referred work 1s Hill's book
(8) and to a lesser extent Prager's (10), (11) and Thomas (17)
books. The results of some papers of speclal interest (1), (9),
are recalled in some detall in the context of the following

sectlions,
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3. THE STATEMENT OF THE PROBLEM AND THE GENERAL
EQUATIONS OF RIGID-PIASTIC FLOW

A. The Statement of the Problem

Under the assumptions enumerated in Section 1, the soll-

wheel problem may te stated in the following terms (Figure 1):

A standing rigid cylinder of radlus r' rotates with con-
stant speed w' and has a given constant sinkage z'. The soll
approaches the wheel with a constant speed at infinilty Uo' and
unperturbed free-surface elevation. Find the free-surface
shape, the soll veloclty and stress flelds in the whole semi-
infinite domain and particularly along the wheel. The normal
and shear stresses along the wheel (o' and 7T') result in a

vertical force W', a horizontal force H' and a torque M',

The equations of rigid plastic flow, on which the solu-
tion 1s based in thils study, are discussed in the following
paragraphs. The boundary conditlions are analyzed 1n Section 5.

The approximate solution 1s given in Sections 6 and 7.

In applications the sinkage z' 1s not gilven, but the vertl-
cal load W'. From a mathematical point of view, however, it 1s
much more convenlent to start with a glven sinkage. Once the
problem 1s solved, a correlation between sinkage and flotation

1s found and z' may be determined for a given W'.

B. The Physical Behavilior of a Rigid-Plastic Materilal

The 1deal rigild-plastic model, adopted here for representing
the clay behavior, 1s based on the following assumptions (8), (17):
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- The plastic deformations are much larger than the elas-
tic ones (which may be neglected). The elastic state is there-
fore approximated by a rigid state (Young modulus tends to in-
finity). The only possible rigid motions are translation and
rigid rotation.

- In the plastic state the maximum shearing stress at any
point is constant and equal to the yleld stress k'. In the
rigid state 7' < k',

- The material in plastic state flows, the direction of
maximum shear stress and the direction of maximum shearing
strain-rate being parallel (i.e. the stress and strain-rate ten-
sors have parallel principal axes). There is no one to one
correspondence between the stress and the strain-rate, which
means that in a plastic flow the maximum shear stress 1s con-
stant but the shearing strain rate may vary. The deformation

work 1s totally irr-eversible in a thermodynamic sense.

- The material 1s incompressible and a hydrostatic pres-
sure does not influence the plastic flow. Only the deviatoric
stress plays a role in creating plastic flow. The material 1is

homogeneous and isotropic.

The above assumptions lead to the simplest rigid-plastic
model. They may be modified in order to take into account elas-
tic effects, anisotropy, friction and work-nardening. Although
this study 1s restricted to the application of the ideal rigid-
plastic model, it 1s worthwhile to discuss briefly the work-
nardening model, which 1s useful for ruture work on wheel-soil

interaction.

S S
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While an i1deal non-hardening material ylelds under constant
yleld stress, otherwise being rigid, the yleld stress of work-
hardening material 1is dependent on the history of strain and
increases with the total shearing strain (or with the work of
deformation). The stress-strain curve of a non-hardening ideal
rigid-plastic material 1s a straight line (Figure 2), while in a
work-hardening materlial it 1s curved. The physical microscopical
mechanisms which underlie work-hardening of metals (8) and of
solls are probably different, but the macroscopical description
is satisfactory in both cases. Due to mathematical difficulties
the work-hardening theory has apparently not yet been used in
soil mechanics. An ideal rigid-plastic material (meaning also
non-hardening here) may be regarded as a limit of a work-harden-
ing material with a very high rate of hardening (Figure 2). This
interpretation will be useful in the discussion of Section 4C.

C. The Equations of Two-Dimensional Steady Flow (Cartesian
Coordinates)

Although the equations of plastic flow may be found in
text-books (3), it is worthwhile to discuss them here briefly.

The kinematics of flow 1s described with the alid of the
velocity components u', v', and the stress field by ox', oy'

Txy' (Figure 3).

The equations of motion, valid for any type of material

are



HYDRONAUTICS, Incorporated

90! oT!
X, S P

ox!' oy!

aT! ¢!

— xy + y £3
ox! oy!

The positive signs of the
Figure 3.

-12-
! ou' u'
p' \u' ax! + v 3_377) (3.1]
1 1
p'(‘“ %%T'* ' 957)*'p'g (3.2]

different quantities being those of

The assumption of incompressibility ylelds the continuity

equation

(3.3]

The assumption of constancy of yleld stress 1n the plastic

zone 1s reflected by Von-Mises criterion (8)

(ox' - oy')a + 4 T

3

= Lx'? (3.4]

and finally, the parallelism of principal directions of stress

and straein-rate tensors is mathematically described by Saint-

Venant relationships
ou' ov! du' + ov'
ox' oy oy! ax' [ ]
TR e o= © 3.5
X y y X Xy

e st et et
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which by the continuity equation become

' ' du' __av'
% &y (3.6)
2 T T au! + dv! 3.
Xy 3y ax'

The five differential Equations [3.1], [3.2], [3.3], [3.4] and
(3.6] are in principle sufficient in crder to determinate the

unknown funections o ', o', T' , u' and v'.
X y Xy

The flve equations may be reduced in a particularly con-
venlent way to a system of four equations by introducing Von Mises
variables p' = - (0 ' + 0y0/2 (the isotropic pressure) and @-the
angle between the direction of maximum shearing stress and the
x' axls., The two orthogonal directions of maximum shearing
stress a and B (Figure 4) are selected such that the maximum al-
gebralc normal stress acts in the first or third quadrant (Fig-

ure 4).

The new variables p', @ replace ox', oy' and Tiy through

the relationships

1 — _n! _ '

o' = -p k' sin 2 ¢

oy' = -p!' + k' sinh 2 ¢ (3.7]
! c— !

Txy = k' cos 2 &

which satisfy Von Mises criterion [3.4].
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Using dimensionless varlables (defined in "Notation") the

equations of plastic flow become

3p o o _ du , , 2u
o + 2 cos 2¢ 5% + 2 sin 2¢ 39 * Hiu X + Vv 3y (3.8]
3p 3 _ g _ 3v. dv | _
By+2$1n2¢3x 2cos?¢ay— Huax+vay G (3.9]

du dv du , dv
2 — — - — — =
cos 2¢ (ax — )4 sin 2¢ (ay * 35 ) 0 (3.10]
plU 13
The plastic-inertial dimensionless number H = —-E$—— (some-

how similar to Feynolds number in a viscous flow) is particularly

significant for the soil-wheel interaction.

D. The Characteristic Directions and the Inertial Terms

In plasticity theory the inertial and gravitational terms
are neglected (equivalent to assuming H = 0.G = 0). 1In this
case Equations [3.8] - [3.11) form an uncoupled quasi-linear
system of first order: the derivatives of p and @ appear in the
two first equations, while those of u and v in the last equations,
Each of the two systems 1s totally hyperbolic and has two charac-
teristic directions (8). Accidentally, the characteristic direc-

tions for p,?# and u,v coincide and are the a and B directions.

e et
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The equatlons are rewritten in curvilinear characteristic co-

ordlnates xa, X

B

the veloclity being now referred to the new coordinates.

L

2o

<

d
cos & Yol sin ¢

sin ¢ g%— + cos @

ucos g+vsing

by using the variables transformation (8)

d

axﬁ

axﬁ

~-usin g+ v cos g

[(3.12)

After some algebraic manipulations the system [3.8] - [3.11]

vecomes (with H = G =

0

)

) Y]
St 2y
a a
2p _ 28 _
X _
xﬁ Bxﬁ
Mo 28 _
X Bxﬁ -
:_"e+v 2
J(B G.J(B

(3.13]

[3.14]
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Equations [3.14]) are known as Geilringer equations. The
lines a = const and B = const are known as sliplines and they

determine an orthogonal network.

Equations [3.13) and [3.14]), known as the equations of quasi-
static plasticity, have the well-known propertles of hyperbollc
systems: The Cauchy problem for p, g, va, VB has a unique solu-
tion 1f the data are given on a noncharacteristic curve; the
solution at a point depends only on the data on the portion cut
by the two-characteristics through the given point; veloclty
tangentlal discontinulties are possible along a characteristic;
the velocity derivatives or p and @ derivatives may be discontir
uous along charac »:ristics. p and @ may be discontinuous along
a line of stress-discontinulty which cannot be a characteprist!
All the above properties are discussed in detall !} I '

and will be used extenslvely 1n Sections & and

The neglection of the 1nertial terms in plaati
when applied to metal technology 1s entirely | 1
H << 1 there (because of the very high value of
1s true for foundation engineering whet
equllibrium are considered. In the case of
tion, however, H may be of the order 0O(1). !
a soll with k' = 3 psi, p'g = 120 pcf, H |
for a translational speed Uo' = 7.5 mph. he |
therefore, may be important in mobility proti
has been ignored 1in both plasticity theory nnd b
Most of the laboratory tests have been carr!ed

of H much smaller than in fleld conditiona.



HYDRONAUTICS, Incorporated

-KF-

An attempt to discuss the full equations of plastic flow 1s

presented by Spencer (16).

Spencer analyzes the system (3.12]

as a quasi-linear system for p, &, u, v and determines the char-

acteristic directions by the well-known method (see (4), p. 171-

173).

The characteristic determinant of the system [3.8] - (3.11]

considered by Spencer has the form

1 cos 20 -
Y 8in 2¢

H(u -

(0]

Av) 0
H(u - Av)
= 0
- sin 2@ +
in 2¢ + L\ cos 2¢
2N
fatlic direction
{riant showa that rather than
Por A
' tan ¢ (3.15]
woterint) f the quasi-

that th

ystem (3.8] -

\ bl This

haracteristics.
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concluslon 1s open to criticism for the following reason: Like
in the quasi-statical case, Equations [3.10] and [(3.11] form a
decoupled system for u and v which 1s hyperbolic and has the
characteristic directions of [3.15). No matter what the form

of the right hand sides of Bgations [3.8]) and [3.9], the deter-
minant will vanish for these two characteristic values of 1,
which can be easlly seen from the inspection of the last two
lines of the determinant. No conclusion regarding the influence
of the right hand side of Equations [3.8) and [3.9] can be drawn
from 1ts vanlshing. A better insight into the problem may be ob-
talned by writing the system [3.8) - [3.11] in characteristic
coordinates 1.e., by the ald of Equations [3.12]. The result 1is
(16)

dv
P, 5 o _ _ Hv, [====wv L) + G sin ¢
axa dx Baxﬁ Baﬁ
(3.16]
v
°p o 28 _ H v fed + v 27 + Gcos ¢
X X aldx a 3x
8 B a a
v A
_a_, 2 _
3x B axa
$ (3.17]
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Obviously the Geiringer Equations [3.17] are the same as
(3.14]. Equatlons {3.16], however, do not satlisfy the require-
ment of fully hyperbolicity ((4), p. 173) which states that all
the quantities should be differentiated along the same charac-
teristic. The presence of the cross-derivatlves 1n the right-
hand sides of Equations [3.16] shows that the usual properties

of a hyperbolic system are not met here.

It is beyond the purpose of thls study to lnvestigate the
nature of the system [3.16] and [3.17] which in fact 1is the
basls of a new chapter of appllied mechanics whilch can be called
dynamic plasticity. At this stage, assuming that for the soil-
wheel interaction H < 1, a perturbation expansion, simllar to
that suggested by Spencer (16), will be adopted. In such an
expansion, in which H 1s a small parameter, the leadlng term
satisfies the hyperbolic quasi-static equations [3.13) and
(3.14). The wheel-problem will be studied (Sections 5,6) in
this first quasi-static approximation at thls stage. In Sec-
tion 4 the influence of the inertial terms on singular points
and lines wlll be discussed and the quasi-static solution will
be bullt in the light of the results. In this sense the influ-
ence of the inertlial terms will be reflected in the proposed
solution, which 1s different from the type of solutions adopted
in rolling and extrusion theories (8), (1).

It is worthwhile to mentlion here that 1n a hypothetilcal
case of very high H (for instance, for a vehicle which 1is not

wheel-propelled) a perturbation expansion of Equations [3.16],
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[3.17) starts with the equations of inviscid flow (Euler equa-
tions) as the leading term. The soll behaves in this case as

an inviscid fluld, rather than a plastic solid. The Euler equa-
tions have an elliptic character. The problem for intermediate

H 1s therefore somewhere between these two extremes.

In an analysis of the equatlons of flow, written in the
form of a second order system for p, u, v by the elimination of
# from [3.8] - [3.11], Thomas (17) has found the same character-
istic directions [3.15], but he did not discuss at all the nature
of Equations (3.16], (3.17]. Assuming continuous velocitles and
pressures, Thomas showed that dilscontinuities in the second
derivatives of the velocities can occur only along the charac-
terlstics. The only applications discussed by Thomas are of un-

steady flows with no inertial convective terms.

E. The Equatlons Along Streamlines

The equations of plastic flow have been written so far in
cartesian and characteristic coordinates. It 1is worthwhile to

rewrite them in coordinates attached to the streamlines.

With 8 the angle between the streamline and x axls, s and
n coordinates along and normal to the streamline (Figure 3), the

following relationships hold

d ? d
e 5;—005 8 - — sin 6

en
%:%sin9+%cose (3.18]
u=7V cos 8
v =V sin 8

e s e e e
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The substitution of Equation [3.18] into Equations [3.8] -
[3.11] gives

°p 8) 8 9) 8 _
3¢ + 2 cos 2(g-8) 35 + 2 sin 2(g-6) e = - H=s G sin 6
%p ) 2 _ 8) 2% _ _ ¥ _
an+251“2(¢e’as 20052(¢6)an Hvaas G cos 8
cos 2(@-8) :—Z + sin 2(g-8) g_X + V sin 2(g-8) g—z -
-V cos 2(@-8) %%-: 0
oV L)
£+Va—r;—0 [3.19]

The Equations [3.19) are used in Section 4 for some applications.

F. The Condition of Positive Work

The Saint-Venant condition [3.6] expresses the parallelism
between the principal directions of stress and strain-rate ten-
sors, but does not specify the signs of the two, which permits
for two alternatives. Only one of them, which satisfies the re-
quirement of positive dissipation work 1s a valld representation

of a plastic flow.

The power of dissipation is given by

E=¢_0 +2T v _ _+€_0 >0 [3.20]
XX X Xy Xy Yy y
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In terms of u,v and @.E is expressed as

dv du du v
- — e — : — — >
E = sin 2¢ (ay — )+ cos 2¢ (By Yy ) 0 (3.21]

In characteristic coordinates, Equation [3.21] transforms
with the aid of Equations [3.12] into

E =

1>
vV a 3x & [3.22]
a a

1 Ay v dv?
B B oxg

Equation (3.22) has been found by Prager (10) from graphical con-

siderations. Since the operator Vo represents dif-

axa B 3x

B

ferentiation along streamlines (g%), E may be finally expressed

as

2
V_ 3V, 5. (3.23]

v v, ds

a'p

=
I
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4, SOME APPLICATIONS OF THE GENERAL
EQUATIONS OF PLASTIC-RIGID FLOW

As stated 1n Sectlon 3, the general study of the equatlons
of plastic-rigid fiow (3.8] - [3.11] or [3.16], [3.17] is be-
yond the scope of thls report. A discussion of the application
of the equations to some particular lines and singular poilnts

1s presented here because of 1ts importance for the wheel problem.

A, The Free-Surfagg

The soll free-surface 1n the rigid zone of uniform flow is
horizontal. In the vicinlty of the wheel,1n the plastic region,
the free-surface curves. Three boundary conditions have to be

satlisfiled on a free-surface

c =0
L } [4.1]
T =0
n
V =0 (4,2]
n

1.e., the free-surface 1s stress-free and 1t is a streamline (in

a steady flow).

From Equations [3.7] we immediately find that Equations [4.1]
are equivalent to (Figure 5)

L4.3]
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i.e., the a lines intersect the free-surface at 45 degrees. The
plus sign in Eguations [4.3] corresponds to a state of compres-

sion, the maximum compressive stress being o = -2. For & - 8= -m/4
2, 1.e.

the normal stresses are tensile with a maximum value of 7

twice the yleld stress (Figure 5).

Considering first the state of compression, 1t is easy to

ascertain that (Figure 5a)

T
V cos

v = ™
o * [4.4)
VB = =V sin %

Hence, from the condition of positive work [3.23] it is found
that

V3
—a-g—< 0 [45]

which means that the speed along a free-surface has to decrease
in the direction of flow.

The equations of flow [3.19] become in the case of a free-

surface (# -6 = w/4,p = 1)

3g _ H ¥V
2 Sn - " 3 35 G sin 8
EE+2£=_HV39-6—-GCOSG (4.6]
dn ds 8s
oV 36
i Ve = 0
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The second equation of [4.6] shows that for a convex free-surface
the pressure decreases along the normal, inside the flow reglon,
1.e., tensile stresses are induced beneath the free-surface. The
last equation of [4.6] shows that 36/dn > 0, i1.e., the stream-
lines diverge in the flow direction.

In the case of tension (# - 8 = - /4, p = 1) the speed has

to increase along the free-surface.

B. A Boundary With a Rigid Body

In plasticity theory (8) two conditions are imposed on a
boundary with a rigid body: the normal speed is zero (streamline)
and a stress condition. Three types of stress conditions are
assumed: on a '"rough" surface T = 1, on a "smooth" lubricated
surface T = 0 and on a frictional surface T is proportional to
o (Coulombian friction). There is no restriction on the tan-
gential velocity which is generallydifferent fromthat of the rigid
body (Figure 6). The sign of the shearing stress on the rigid
body depends, however, on the relative flow along the body: T

acts in the direction of relative flow.

Assuming for the time being (see Section 5) that the stress
boundary condition is T = Tw’ i.e., the shearing-stress 1s gilven
(0 = TS 1), let us first consider the Equations [3.7]). For a
given Tw the angle between the a line and the body is given by
(Figure 6)

T, = ¢os 2(# - 8) C4.7]
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Since Tw acts 1n the direction of relative flow, the angle
between the a line and the boundary 1is smaller than 7/4 with
respect to the relatlive flow direction. Three cases of a
locally slipping and skidding boundary are represented in Fig-

ure 6,

The veloclty components on the characteristlc directlons

are

V cos (g - 6)

<
"

(4.8]

<
]

-V sin (g - 6)

The condition of positive work [3.23] applied along the

boundary glves

1 d3V?
cos (# -8) sin (& -6) 3s > 0. L4.9)]

Hence, for an accelerating flow along the boundary in the direc-
tion of relative flow Equation [4.9] gives

sin (# -8) >0, [4.10]
since cos (@ -6) >0 for |@ - 6| = %-. Consequently, 1in the

case of an accelerating flow @ > 6 (Figure 6a), while for a
retarded flow g < 8 (Figure 6b),



HYDRONAUTICS, Incorporated

—2g -

A 1imit case 1is particularly important since 1t permits
the exact integration of the equations of flow, namely Tw = 1

(a rough boundary) i.e., @ -8 = 0.

In this case the boundary 1s a characteristic line and

Equations [3.19] become

g% + 2 %% = - g-égi - G sin ®

%ﬁ -2 %% = - HVW %% - G cos 8 (4.11]
g% -V %% =0

NivE-o

From the last two equatlions we find §§-= 0, V = const.

Hence, the speed 1s constant along a streamline which 1s a char-

acteristic,

The first equation of [%4.11] yields
p + 28 + Gy = const, (4.12]

Eqdation (4.12] shows how the pressure variation depends on
the curvature of the boundary. In the case of a wheel p decreases
along the boundary, since 38/3s > O (assumlng that the gravity
effect 1s negligible.)-
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In the case 1n which a streamline 1s an envelope of char-
acterlstics the velocity may vary along it. This property has
been used in Prandtl solution (8) of flow between two rigid
plates and Alexander (1) solution of rolling. This possibility
1s used in this work too (see Section 6).

C. A Line of Separation Between Reglons of Rigid and
Plastic Flows

A body moving 1n a rigid-plastic material generates a

region of plastic nonuniform flow in 1ts vicinity. Since at in-
finity the flow is uniform and in a rigid state,there is a transi-
tion between the two regions. 1In all problems of metal technol-
ogy similar to the soil-wheel problem (extrusion, rolling, wedge
indentation (1), (8), and solved with the aid of the quasi-state
equations),it 1s assumed that this transition is realized through
a line of tangential velocity discontinuity.

Such a line 1s regarded as a limit of a narrow zone of
plastic flow in which the tangentlal velocity varles rapidly
(Figure 7), (8). 1In this layer the direction of maximum shear-
ing strain-rate 1s parallel to the layer axis. It 1s, therefore,

assumed tvhat the discontinulty line 1s a characteristic 1line.

Along such a line the tangential velocity Jump 1s constant.
This is simply found from Geiringer's Equations [3.17] (Figure
Tb). Assuming that the discontinuity 1line is an a line, from

contlnulty normal to the line

vﬁ' = -UO' sin @ (4,13]

e
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The first of Equations [3.17] gives

ava' 3

5o ="Using g or C4.14]
a a

vy' - U cos 7 = const (4.15]

Since the component of the rigid uniform flow along the line
1s U_' cos #, Equation [4.15) states that the tangential jump is

constant.

In a rigid-plastic material the shear stress in the plastic
narrow zone 1s constant and equal to the yleld-stress, 7' = k',
Since there 1s no varlation in the shear stress across a thin
layer when lnertial effects are neglected, the shear stress at
the boundary between the plastic layer and the rigid zone 1s

T' = k' and decreases 1nside the rigid zone.

In a work-hardening materlial in which inertlal effects are
neglected the discontinulty layer has to diffuse and to have a
finite thickness, since the shearing stress at the 1limit of the
rigid zone must be smaller than the ultimate yleld-stress. If
the zone of work-hardening in the stress-strain dlagram (Fig-
ure 2b) is narrow, the transition layer may be thin and the dis-

continuity line 1s still a valld approximation.

When inertial effects are taken into account the first
question to be asked 1s if a llne of velocity discontinulty 1is
posslble. Applying the momentum equation to such a discontinuity
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line (Figure Tc) it is found that a shear-stress discontinuity

exlists across the line

[ - ™1 — A
5T plastic = Trigia = P'Uo' sin g v (4.16]
or in dimensionless variables
5T = H sin & 6V . (4.17]

If 6T is much smaller than unity (6T' << k') or # = 0 (no cross-
flow), inertial Jump may be neglected and the conclusions ob-
tained from quasi-static considerations are valid. But in the
case of soill-wheel interaction H may be of order unity and the
inertial Jump cannot be neglected. The important conclusion 1is
that (assuming that in the transition layer the characteristics
are directed along the layer), the inertial effect causes the
thickening of the layer in an ideal rigld-plastic material,
since otherwise the plastic flow wlll start with Téax < k',
Hence, a velocity discontinuity 1s not acceptable in an ideal

rigid-plastic material.

If work-hardening is taken into consideration, then a
narrow transition zone becomes pcssible agaln when inertial ef-
. fects are consldered, since plastic flow may start with T&ax < k',
At any rate, since Te' > 0 (Figure 2b) the inertial Jump is 1lim-
ited by the value

5T = H &V sin g < 1 . (4.18]
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In a similar context the direction of the velocity discontinuity
has to be such that

5T = HBV sin g2 O [4.19]

l1.e., the maximum shearing stress in the rigid zone is smaller
than the yleld stress.

At this stage 1t will be assumed that in the case of soll-
wheel Interaction the rigid and plastic zones may be separated
by a line of velocity discontinulty, provided that Equations
(4.18) and [4.19] are satisfied. It is however, falr to say
that this point needs further theoretical and experimental in-
vestigation in the framework of dynamic plasticity.

The velocity Jump 1s constant and given by Equation [4.15],

since inertial terms do not affect the Geirlinger equations.

D. The Centered Fan

A bundle of intersecting characteristics of the same family
determine a centered fan (Figure 8a). The vertex of the fan is
a singular point. This singularity plays an important role in
quasi-static plasticity and it 1s used in the solution of ex-
trusion, rolling and sheet-drawing problems (1), (8). In all
these solutions a veloclty discontinuity 1s admitted at the
vertex. It will be subsequently shown that 1n a plastic flow
with inertial effects such a discontinuity 1s not possible.
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Assuming, for sake of definiteness, that the straight char-
acteristics are a lines, we may replace the a, B coordinates by

polar coordinates (Figure 8)

o _
3X

o B I

9 . - _ ) _ )
- T , 33 ;v =V i Vg = Vg (%.19]

LS.
dx

while, by definition

7. 0 of _ 1 L4 20]
X X r
a B
Substituting the above relationships in Equatilons (3.16] -
(3.17] we obtain
3p Vg Bvr
ST = - H T 35 " Ve -G sin 6 [4,21]
éR ave
5 -2=-H V. S5 - G cos 8 (4,22]
avr ave
= 0 55t V. = 0 (4.23]

Equation [4.21] implies that generally p becomes infinite at tre
vertex. This inadmissible effect may be avolded in three cases:

(1) vy = O which by Equation (4.23] gives v, =0, l.e., rest;
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dv
(11) =& - v, = O which together with Equation [4.23] provides
38 8

for v, and ve the solutions

v C, sin 8 + C; cos 8 C4.24]

r

C, cos 8 - C, sin 6

\:

In a cartesian system the velocity distribution [4.24] 1s equiva-
lent to

]
(@]
»

U=V cos 8 -v, sin 8
r 8

(4.25]
Cy

v=v sin 8 + v, cos 8
r 8

representing a uniform flow.

The pressure distribution is, according to Equations [4.21]
and [4,22]

el
I
n
D

which 1s obviously identical with that obtained in a quasi-static

case;

\'
(111) Vg = ve(r) r;&mo ——=0 (4.27]
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Equations [4.23) and [(4.26] shows that v 0 and this is,
therefore, a rotational flow around the vertex The pressure

distribution in the centered fan 1s given by

vy?
p=2 -0y +H | —dr (4.28]

Case (111) offers the possibility of matching plastic flows
around concave corners (Figure 8b). 1In the case of a convex
corner, 1in quasl-static solutions 1t 1s generally assumed that
the flow passes from the uniform regime to the plastic flow (Fig-
ure 8c) through a line of velocity discontinuity AD followed by
a centered fan with discontinuous ADC veloclty at the vertex A
(1), (8), (10). In a flow with inertial terms taken into ac-
count, the only possible type of flow behind the discontinuity
line is a uniform flow (Figure 8d). This important difference
has to be kept in mind when solving the soil-wheel problem.

E. A Line of Strescs Discontinulty

The shear (T) and normal stresses (cn) have to be con-
tinuous across a line. The normal stress parallel to the line

(0, ) may be discontinuous (Figure 9). Hill ((8), p. 157) has

)
t
analyzed thils type of discontinuity along a line separating two

plastic zones.

His conclusions are: (1) such a line cannot be a character-
istic; (11) the characteristics of the same family from the two
sides intersect the line at a same angle X (Figure 9) ; (1ii)
the pressure jJump is given by |p. - ps| = 2 sin A, and (iv) the
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velocity 1s continuous across the stress discontinuity line. The
last property shows that such a line is acceptable in a plastic
flow when inertial effects are taken into account and all above

conclusions remain valid.
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5. APPLICATION TO THE WHEEL PROBLEM

A. General

A rigid cylindrical wheel (roller) rotating and moving
with constant speeds 1s considered here. The study 1s limited
here to a driven slipping wheel which by definition has peripheric
rotational speed larger than the soll speed at any point of the
soll-wheel interface. Consequently the shearing stress along

the wheel 1s positive everywhere on the interface.

Assuming that the soll, a soft undrained clay, behaves
like a rigid-plastic materlal,one has to solve mathematically
the problem by integrating the equations of plastic flow [3.8] -
(3.11] with the appropriate boundary conditions.

Due to the difficultles caused by the 1lnertial terms a per-
turbatlon expansion technique 1s used 1in order to simplify the
equations ("6). The influence of the inertial terms on some
particular lines (Section 4) will be, however, taken into

account.

B. The Perturbation Expansion

Spencer (16) has suggested a perturbation expansion of the
equations of flow [3.16], [3.17] in which H is considered a small
parameter. Assuming that all the variables may be expanded in

a power serles as
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p=p +Hp +Hp + ...

¢=¢O+H¢1 + H% + ...
vV =V + Hv + H3%y + ... (5.1]
a a o Og
vV, =V + Hv + H3% +
B Bo B Ba

and substituting in Equations [3.16], a set of separate systems
of equatlons 1s obtalned for each order of approximation. Here
only the zero order terms are considered. They are satisfying
the quasi-static equations [3.13] and ([3.14], assuming that G
(gravity effects) 1s also small.

Since only the zero-order approximation wlill be subsequently

consldered, the zero sub-1ndex 1s omitted.

A legitimate question 1s that of the valldity of the expan-
sion 1n cases 1n which H 1s not small. A rigorous investigation
of this problem 1s suggested for a later stage (Section 11).
Intuitively, 1t seems that for moderate value of H (H< 1) the
inertial effects are mainly concentrated in the discontlnulty
llnes rather than 1n the plastic region. It 1s, therefore, hoped
that taking certain precautions in the zeyo-order approximation,
the zero-order solutlon 1s an acceptable approximation for the

soll-wheel 1nteraction at moderate speeds.
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C. General Properties of Quasi-Statlc Solutlons

The solutlon of the soll-wheel problem 1n the quasil-static
approximation 1s still very difficult, as may be ascertalned

from the examlnation of similar solutions in metal technology.

In fact, almost all solutlons obtalned so far 1n plasticity
theories are approximate, or "incomplete." A complete solution
of a plasticity problem requires the determination of p, &, u, v
satisfying the equations of flow [3.13] - [3.14] 1in the plastic
region and the boundary conditions, and the determinatlion of
Gx’ cy and Txy in the rigld zone satlisfylng the elasticlty equa-
tions and matchlng the stresses at the rigid-plastic Interface.
The equatlions are elliptic 1In the elastic zone and hyperbolilc
in the plastlic zone. The location of the line of separatlon be-
tween the two zones 1s unknown and the same 1s true for the
free-surface, 1f 1t occurs, Since the complete snlution 1s very
difficult the usual approach in plasticity 1s to look for ap-
proximate incomplete solutions which give lower and upper bounds
of the exact solutions (8), (11).

A lower bound 1s found by assumling a plastic pattern which
satlsfles only the stress boundary condlitions, whille klnematical
boundary conditions are neglected. In other words, if a stress
distribution in both the assumed plastic and rigld zones which
equlilibrates the external forces 1s found, then the exact solu-

tion will allow for larger external forces.
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The upper bound is found by assuming a plastic flow pattern
which satisfies the velocity boundary conditions. The forces
become in this case an upper bound to allowable external forces.
The solution is found generally by assuming a priori a certain
qualitative distribution of discontinuity lines, centered fans
and slip-line field and trying to adjust them 1ln order to satisfy

the equations of flow and the boundary conditlons.

In the soil-wheel problem the boundary conditions, for a
given sinkage, are expressed in kinematical terms mainly (see
Section 5E). It is, therefore, natural to seek an incomplete
upper bound solution. Such a solution may be eventually proved
to be an exact one if the stress field may be continued in the
rigid zone. Otherwlse, the validity of the solution has ulti-
mately to be checked by comparison with experiments (see Sec-

tion 9).

It is worthwhile to mention here that in view of the dif-
ferent simplifying assumptions it seems somehow futile to refine
the computations beyond a certain 1limit. An approximate solu-
tion which reflects the main features of the problem and shows
the characteristic trends should be satisfactory in the soil-

wheel case.

D. Qualitative Analysis of the Problem

The solution of the soill-wheel problem has to be found now
by assuming a slipline field which has to satisfy equations of
rlastic flow and boundary conditions. This s facilitated by a
qualitative analysis of the problem,
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First, 1t 1s reasonable to assume that, similarly to all
known solutions in plasticity literature, the plastic region is
of finite extent and attached to the body (experiments tend to
confirm 1t, at least at low speeds). Moreover, in quasi-static
conditions, there 1s no reason to assume a forward influence of
the driven wheel. This 1is the case at least in the solutlons
of rolling, extrusion and sheet-drawing processes. If slight
upétream influences are observed in experiments (22), 1t may be
well due to work-hardening effects (see Section 9E) not taken
into account in a rigid-plastic model. At any rate in all tests
of driven wheels in clays no sensible upstream disturbances of
the free-surface have been reported (18), (5) which confirms the

assumption of upstream rigid flow.

In the downstream reglon the free-surface has to leave the
wheel smoothly and a plastic "wake" of finite dimension 1s
created. This 1is different from rolling and extruslion processes
in which it 1s assumed that the free-surface 1s horizontal im-
mediately behind the body (1), (8), by locating a centered fan
and a discontinuity line at the rear. Inertilal effects do not
allow for such a type of solution (see Section 6C) and experi-
ments, even at low speeds, in both sand and clay conflrm this

conclusion (18), (21), (22).

Consequently. the free-surface has qualitatively the shape

suggested in Figure 10.

The kinematics of flow may be also depicted from qualita-
tive considerations. Since the flow 1s incompressible, from

continulty requirements the streamlines have to look somehow
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as in Filgure 10a. The average speed in the plastic zone is max-
Imum at the bottom of the wheel. The flow 1s converging from up-
stream to the bottom section and diverges downstream 1n order
to match the uniform-rigid downstream flow. Obvilously, in an
Incompressible material and a two-dimensional flow there 1s no
rut and both free-surface ard speed have to reach the unperturbed .

state downstream.

A qualitative picture of a suggested slipline fleld bullt
in the 1light of the above observations 1s presented in Fig-
ure 10b, A detalled argumentation and examinatlon 1s presented

in Section €,

At the bow A a line of discontinulty AB separating the rigild
and plastlic zone 1s suggested. Thls 1s an a llne since shearing
stresses acting on the riglid materlal have to have the same sign
as those acting on the wheel. The speed along the wheel 1s 1n-
creasing from A to C, so that the B lines have to intersect AC
at the angles shown 1in Figure 10b (according to Section 4B). On
the rear portion CR 1t 1s assumed that the flow 1s decelerated.
Hence, the B sliplines have to intersect CR at the angles of
Figure 10b. The transition between the two zones, of converging
and diverging flow, 1s realized through a rigid core BCD which
moves horlizontally wlth the bottom soll speed. A somehow simi-
lar rigid region 1s assumed in rolling solutions (1). Although
not necessarily rigorous, thils separation of the two plastic
reglons ABCA and CBETRC by a zone of uniform flow 1s very con-

venlent for computational purposes (Section 6). The zone RTER
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1s a curvilinear triangle created by the free-surface TR. The
line ET separating plastic and rigld zones at the rear agaln

has to be a characteristic line since at least the second de-
rivatives of the velocity are discontinuous there (17). This

1s assumed again o be an a line, with the rigid 7zone sheared
in the same direction as the soll beneath the wheel. From in-
ertlal considerations (Section 6C) there is no possible veloc-
1ty jump on the line ER and the flow has to match smoothly the

unliform downstream flow,

The region CDER 1s a transition region in which tre flow
diverges. Along DE the speed drops from i1ts maximum value to
the unperturbed speed. The only possible way to satlsfy thils
requirement 1s to assume that DE 1s an envelope c¢f 2 lines sim-
1lar to that suggested by Prandtl in block compression ((8),

p. 228) or by Alexander (1) in rolling. RE is assumed to be a
line of stress discontinulty, so that the angle between the
sliplines 1s discentinuous on 1t, while the velocity 1s con-
tinuous. The suggested slipline 1s.examined in detall in Sec-
tion 6,

E. Boundary Conditlons

The boundary conditlions on the different portions of the
plastic flow domain ABDETRCA (Figure 10b) have been in part dis-
cussed 1n Section 4, buft will be briefly recalled here. The
problematic boundary conditlon - that of stress on the wheel -

will be discussed in more detall later.
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The separation line AB 1s assumed to be an a characteristic
line with a veloclty Jump along 1t. The line DE 1s assumed to
be a horizontal envelope of a lines with a varylng veloclty
Jump along it. The line ET 1s an a line wlth contlnuous veloc-
ity across, 1.e., u= 1, v = 0 on this boundary. CB and CD are
assumed to be B llnes with contlnuous veloclty across u = Uy s
v = 0 (Figure 10a). The free-surface RT 1s stress-free and a
streamline (Equations [4.1] and (4.2]. The location of all these

lines 1s a priori unknown.

The only remaining boundary 1s the soll-wheel interface
which 1s obviously a streamline. An additional stress condition
1s necessary 1n order to solve the problem. We have not been
able to find experimental evidence on this condition 1in the

literature for the case of a wheel-clay 1nterface.

A perfectly rough wheel may be imagined as a rim with a
series of spuds which cut ® 1¢ soll. The spuds have to be very
small 1f the wheel 1s to be consldered as a smooth continuous
line and the quantity of entrained material has to be negligible.
A perfectly smooth wheel may be imaglned as a smooth lubricated
surface with zero shear stress along 1t. A real rough wheel
1s probably somewhere between the two. In Uffelmann's experi-
ments for instance, (18), the highest shear stress attained on
the wheel was T = 0.3. In (5), rough and smooth wheels tested
in the same kinematical condltions gave approximately the same
resultant forces. We are inclined, therefore, to admit that
the shear stress on rigid wheels 1s less than the yleld stress

and there are no perfectly rough wheels. 1In reality the problem
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1s more complex. Betweer the wheel and the soil body moving
with different speeds a boundary layer of wet clay probably de-

velops. This problem rieeds speclal consideration and analysis.

At thils stage, and 1in trhe framework of the rigid-plastic
model, it will ve assumea that or. the forward part of the wheel
AC ine srear stress ™ 1s constant and given (0 < ?w < 1), Tts
magnlitude has tc be determined experimeritally. It wlll be shown
that there 1s no major difficulty in solving the problem when

more comﬁlex relationships are used, llike w deperding on the
slippage along the wneel or on pressure; the effect of such
relatlonships on the plastlc flow 1s left for future investiga-
tion. At tre rear portion CR it 1s assumed tnat the shear stress
drops alorg the wheel from Tw at C te T = 0 at R. This type of

T distributlon seems ‘o be conflilrmed by experiments with driven

wheels (18).

In additlion to velocity and stress conditlons the line ACR
ls the only orie wnose locatlion 1s krnown, havirg the eguation
X +y® = 1 Tre devermiration of the sliplire fleld in tne xy
physical plane smarvs always from tnls line Tr.e angle of de-
tachmer.t er is unkrown ana corstitures one of tre Important

parameters cf tne problem
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6. THE SOLUTION OF THE QUASI-STATIC
EQUATION FOR THE DRIVEN WHEEL

A, The Method of Solutlocn

The wheel-soll problem belongs to the difficult category
of problems in which both kinematical and stress boundary con-
ditions are imposed on the different boundaries, which 1s dif-
ferent from the foundation engineering prcblems in which the
problems are formulated in terms of forces solely. For this
reason the four variables p, &, v, Vg are interrelated and

the whole set of Equations (3.13] and [3.14] has to be used.

The method used here 1s the analytical method of Hill's
book ((8), Chap. VI). The problem will be solved in an auxil-
lary characteristic plane rather than in the physical xy plane,

Selecting arbitrarily, but conveniently, two parameters
a and B such that a is constant on B 1lines and B 1is constant on

a lines, the variables p, &, Va’ v,, X,y become functions of

B
a,B and satisfy fhe following set of equations

3 Y )
5§-+ 2 5. 0 (6.1]
%g--eg—g=o (6.2]
dv

2 _, ¥ _, [6.3]
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dv
_B 3d _ '
35 + v, 3 ° 0 (6.4]
%%-- tan ¢ %§-= 0 (6.5]
Y + cotan @ 53 = 0 16.6]

Equations [6.1] - [6.4) are obtained from Equations [3.13] - [3.14]
by reducing by the factors ha = dxa/do ) hB = dxﬁ/dﬁ. ha and h

are the metrics coefficients (or Lamme ' coefficients) and they °
represent the scale factors tetween the characteristic and phys-
1cal planes A well-known property of nyperbolic systems is
thelr Invariance under a change in characteristic variables, Note
that tue full equations of flow [3.6] and [3.7] do not possess

this property.

Fquations (6.5] and [6.6] are simply a transcription of the

characteristic directions (Equations (3.15].)

A convenlent transformation of Equations [6.5) and [6.6] 1is

achleved by using the new variables ((8), Crnap. VI).

Nt
1]

X cos @ +vy sin @ (6.7]

=-xsin @ +y cos ¢

<
|

which give
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¥.,.x¥., (6.8]
a da
3x - 38
-a? —y -ﬁ: O [609]

B. An Incorrect Slipline Field

Before proceeding to the detailed solution of the flow
problem it 1s worthwhile to discuss a slipline field suggested
In the early stage of this work which proved later to be incor-
rect. This analysis is also valuable since in (22) it is claimed
that the experiments show such a field.

In the preliminary stage of the vork it was assumed that
the plastic region is delimited by a closed a line (Figure 11).

This was proved ultdmately wrong for at least two reasons:

(1) At R the free-surface 1is intersected by the CR o line
at 45 degrees (Figure 11). According to Section 4A the region
TCRT 1s 1n a state of compression. Under these circumstances
the detalled solution of flow in the triangle TCRT (the method
1s given in Section 6C) has shown that the free-surface is con-
cave (Figure 11) and the speed 1is increasing from T to R and
negative work 1is done in the entire TCRT region, which contra-

dicts the basic condition of plastic work.

(11) The velocity Jjump along ABCR is constant and a typical
streamline has the shape deplcted in Figure 11. It is easy to

ascertaln that along the rear portion BCR the inertial shear
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stress Jump along CR 1s such that the snear stress in the rigid
zone is larger than the shear stress in the plastic zone, 1i.e.,

larger than the yleld stress.

For these two reasons this initlal slipline field, although
esthetlcally appealing at first glance, has been abandoned in
the favor of that of Figure 10b.

C. The Free-Surface Region RETR (Figures 9b and 1i)

Let us consider in detall the free-surface curvilinear tri-
angle TFRT in the physical plane (Figure l2a). A point P has
the coordinates x,y and the characteristic coordlnates aP. BP.
The characteristic cocrdinates are selected as follows: the
value of B on the a characteristic line P'P 1s B = gﬁ’ 1.e. the
value of @ at the intersection of the a line and the free-surface;
the value of a on the B characteristic P"P is equal to ﬂpu, i.e.
the value of @ at the intersection of the B line and the free-
surface, As long as the free-surface RT 1s curved with no 1n-
flexion points a one-to-one correspondence exists between X,y

and a,B.

At point T the free-surface has to te tangent to the hori-
zontal unperturbed rigld free-surface. Otherwlse a veloclty
Jump BV will exist along FT (Figure 11). Such a velocity Jump
induces an inertial shear-stress jump along FT (see Section 4C)
which Increases the shear stress in the rigid zone vbeyond the
yleld-stress. Hence, the free-surface has vo match smoothly the

horizontal and a, = B, = ﬂT = /4,
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At poirt R the free-surface must be tangent to the wheel.
Again, an angle different of zero between the free-surface and
the wheel means a discontinuity in velocify along RF. But a
velocity Jump cannot exist in the interior of a plastic zone
since due to lnertial shear stress jump the shear stress on
one side of the 1line will be different from the yleld-stress,

which 1s absurd. Consequently o = T/4% + er'

r = By = %
The representation of RFTR 1In the characteristic plane ag
is very simple (Figure 12b). By the definition of a and B the
free-surface 1s represented by tre line a = B, while the char-
acteristics are parallel to the axes. Now p, &, Vor Vgr Xs ¥

as functions of a and B, for a gilven er have to be determined.
(1) Solution of p, Z (dynamics of flow) -

The elimination of p from Equations [6.1] and [6.2]
shows that @ satisfles the equation

3%y
Sa3p = 0 (6.10]

The general solution of Equation [6.10] is

g = f(a) + h(B) (6.11]

where f and h are arbitrary functions. On the free-surface

TR(a = B) # = a =B by definition, which gives
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£(g) + h(p) = B
or h(g) = B - £(B)

and

g=1~(a) - £(B) +B . (6.12]

From Equations [6.1] and [6.2] 1t 1is easily found that

p='2(_l‘%da-g—gdﬁ) [6.13]

The Equations (6.12] and [6.13] yield
p=-2f(a) + £(B) -pl +C . (6.14]
On the free-surface RT the lsotroplc pressure s constant and
for the compression state (Equation [4.3) p = 1. Hence, for
a = B Equation [6.14] gives

“4f(a) + 2a +C =1 . (6.15]

From Equations [6.12], [6.14] and (6.15] the final expres-

sions for p and & are
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p=2tb [6.16)
p=-a+f +1 [6.17]

which completely solves the problem.

It is worthwhile to note that at point F (Figure 12)

op +Bp o O,
g, = ——=1++ —, 1,e., the characteristic line TF bends
F 2 F7 2
8
with an angle 7; and the characteristic FR with the same angle
8
?§ . The pressure drops along TF and reaches a minimum value

at F, Pp = -0p * pF +1=1- er which means that the soil is

F
under slight tension in this region.

(11) Solution of vy v kinematics) -

8 (
From Equations [6.3), [6.4) and [6.16] it is found that

va and Vﬁ satisfy the following relationships

oV v

o _ B _

== -5 =0 [6.18]
oV \'

B, o _

3g T2 =0

or, by elimination of Yy and v
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aava VQ,
dadp T 0

[6.19]
Ay v
B . B _
3ap T =0

i.e., Va and Vﬁ satisfy the telegraph equation.

The kinematic boundary conditlons are as followlng: On the
characteristic FT (Figure 12) the velocity 1s continuous and
equal to the rigid velocity u = 1. Hence, from Equation [3.12]

T
E+a
v, = cos g = cos 5
[6.20]
Tt+a
VB = - sin @ = - sin 5

On the free-surface, according to Equation [%.%]
v +v, =0, (6.21]

v, and Vg may be found from Hguations [6.19], [6.20] and
(€.21] by the following prccedure. Let us Introduce a new var-

iable v = Vg + Vv v satlisfles the followirng equations and

B

boundary conditions in the characteristic plare (derived from
Equa*ions [6.19], [6.20) and [6.21]
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My v
rptr=0 (in TFRT) [6.22]

a’p

T ™
a + Q

v = cos } - - sin H.z (on TF) (6.23]
v =20 . (on TR) [6.24]

The triangular domain TFRT in the a,8 plane (Figure 12b) may be
reflected across TR in TF'RT. From the symmetry of the tele-

graph equation and the condition [6.24] v may be determined in
the whole rectangular domaln TFRF'T by reflection. Sirice TF' 1s

the reflection of FR, v takes on the value

T+B Tt
5 - sin >

(on TF') [6.25]

The solutlon of the telegraphlc equation for a function given
along two Intersecting characterlistics by the Rlemann procedure
1s described by Hill ((8), p. 155). 1In the present case the
solution 1s (Figure 12b)

P P,

v(P) =ng—Zda+ng—;dB [6.26]

T *

where G(a,B; aP,BP) = Jo['\/(ap - a)(BP - B)] 1s the Green Function.
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The substitution of the expressions of the Green function
and the values of 3v/3a and 3v/3f on the boundaries in Equa-
tion [6.26] gives filnally

a
g+ 1 R
v(a,B) = - %‘[Jo [ (a-8)(B- %)] (sin 5 E+ cos —Q—F—-)dg
T/4
’ - g + T £+ I
+%[J [ (a - %)(B-E)] (sin 5— + cos eg\dg (6.27]
/4

Equation [6.27] completely determines v. 1In order to find

v_, for instance, the second equation of [6.18] is written as

B

v
__ﬁé_v_eé_= oz [6.28]

The integration of thils ordinary differential equation along a
B line from Pa to P (Figure 12) gives
B

TLe 56 -F
E+G 2 B/2 -€/2
vﬁ(a,ﬁ) = - sin e - € v(a,8) e as ,

2
T/4 [6.29]

which determines v, once v 1s known. Obviously Vy is found from

B
Vo=V - Vg.

a B
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The integrals in Equations [6.27) and [6.29] have been com-
puted numerically (by Simpson rule) on HYDRONAUTICS' IBM 1130

computer.

The resulting values of v_, Vg g and V = Vva? +-vpa are
given in Appendix 1. The computations have been carried out to
the maximum possible value of er = 7/4 and the results may be
used for any arbitrary er in the range 0 < Gr < /4. Each group
of results in Appendix 1 corresponds to a constant a in the
range T/4 < a < /2 and a variable B in the range 7/4 £ 8 < a.
The velocity V on the free-surface has the value of the last
line of each group, where a = 8. It 1s easy to ascertaln that
the veloclty decreases along the free-surface, or increases from
P (VT = 1) to R (VR = 1.75 for er = 7/4). For moderate values
of er’ as encountered in applications, VR is smaller. The ve-
locity distribution along TR will be used in Seé¢tion 7A in

order to determine tne magnitude of the recovery angle Gr.

The results of this section and of Appendix 1 are valld not
only in the triangle RFTR, but in the whole region REFTR (Fig-
ure 10b). The plastic flow in RFER is just the continuation of
the flow in RFTR across the characteristic RF.

(111) The determination of x,y (geometry of flow) -

The mapping of the free-surface triangle TFRT from the
characteristic plane to the physical plane may be done by using
Equations [6.5), [6.6] or Equations [6.8], [6.9]. 1In order to
solve the problems the location of the line RE (Figure 10b) has
to be known. In principle this can be done by starting with the
solution of the x,y equations from the wheel, but this 1is not

done here,
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The x(a,B) and y(a,B) of the line RE are enough in or,der to
solve the problem since an additional boundary condition exists
on the free-surface, namely the fact that g - 6 = /4 (Equa-
tion [ 4.3]. Since tan 6 = dy/dx, on the free-surface RT

%§-= tan (@ - %) = tan 2—§J§ - % (6.30]

This additional conditlon permits, in princliple, the mapping
of the whole region TERT from the a,B plane onto the X,y plane,.

D. The Bow Region ABCA (Figures 10b and 13)

In this case the characteristic coordinates of a generic
point P (Figure 13a) are selected as following: a 1s the angle
ﬂP" at the intersection between the B line PP" and the a base
line AP"B and B 1is ﬁP at the intersection of the a line PP' and

the B base line BP'C.

Some general relatlionships may be found before solving the
problem in detall. At point A (the leading edge) the velocity
inside the plastic zone has to be parallel to the wheel, since
no velocity discontinulty 1s admitted inside the plastic zone

from inertial considerations (see Section 4D). AB is a line of
velocity Jump. The Jjump ®V may be found from continulty con-
siderations at point A (Figure 13b).

From the velocity trlangle, by projecting on the direction
of 6V and on the normal to 1t, the following is obtalned:
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sin GL

= 6.31
Vo = Sin (BL - ea) (6.31]

sin 8
_ a
2 sin(eL - Gaf

6V =V, cos (8, -8_) - cos 8 (6.32]

2

The angle Ga is related to the sinkage z by (Figure 12a)

z =1 - cos Ga . (6.33]
The angle GL is determined by the shearing stress Tw on the
soil-wheel interface at A. GL is the angle between the a line

AB and horizontal, 1i.e., GL = gﬁA' The relationship between Tw
and ﬁ@A is, according to Equation [4.7]

T, = €os 2(¢w -08) =cos 2(6, - Ga). (6.34]

L

which determines GL for given Tw and Ba. Obviously Tw may vary

in the range 0 < Tw <1, 1.e., between perfectly smooth and

L - o= T/4%
while for Tw =1, GL - Ga = 0 and the characteristic AB sticks
to the wheel.

perfectly rough conditions. For Tw = 0 at A, 8

According to our present concept on soil-wheel interface

(see Section 5E) T, 15 assumed constant on AC.

i
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The 1line BC 1s a characteristic B 1line between the plastic
zone ABCA and the assumed rigid core BCDB (Figure 10b). The

veloclty in the rigld core 1s horizontal and constant u = u

b’
v = 0. There 1s no veloclty jump along BC since at C, inside
the plastic zone, the veloclity along the wheel 1s also hori-

zontal. Hence, the slipline AB has a horizontal tangent at B

(4,

(Section 4C), we have

= 0). Since bV, the velocity jump along AB 1s constant

sin Ba
W, = 14 OVEL 4 oy (6.35]
4 a
which glves ub in terms of known quantities. From continuilty
considerations
z+h=nuh (6.36]
or e Vs R fR S U D) [6.37]
= ST sin 6 ’
b a

which gives the thickness of the plastic zone at bottom.

¥Finally, for the slipping wheel considered here the wheel
peripheral veloclity Vw' = W'r' has to be larger than the soll ve-
locity at the interface AC (Section 5E). Since the maximum soil
veloclty occurs at bottom where u = ub, the following inequality
holds
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l .4 , s=2 2 [6.38]

Using the value of u_ of Equation [6.35]

b

sin ea
S22 8

m sin(GL S ea) + sin ea (6.39]

This 1s the minimum slippage necessary in order to ensure
a positive Tw along the wheel. The real slippage may be larger
than Sm and rigld-plastic conslderations solely permit Tw to
remaln unchanged. A more detalled study, experimental or theo-

retical, may reveal a relationship between Sm and Tw'

If we assume that the real sllppage coefficlent S 1s equal
to Sm’ then a relatlonship between Tw and Sm (for given z) 1s
established through Equation [6.39]. For Tl 8 =1, as

expected.

Now, a detalled solution of the plastic flow 1s presented
along the lines of Section 6D. The domain ABCA 1s represented
in the characteristic a,B8 plane in Figure 13C. The representa-
tion follows straightforward from the definition of a and B. The
wheel-soll interface AC 1s represented by an unknown curvilinear

line in the characteristic plane,.
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(1) The determination of p, & (dynamics)

Again, ¢ has the general expression [(6.11]. But, from
the definition of a and B, we have § = a on AB (B = 0) and & = B
on BC (a = 0). This gives immediately

g =a+p (6.40]

The 1sotroplc pressure p 1s related to @ through Equation
(6.13). Hence,

p=-2{a - B) + const (6.41]

Let p, be the pressure at C. Then, [(6.41] becomes

= - - - y. 42
p=p,-2(c-p-4.) [6.42)
where § =g -8 = -4 cos ™ 7
we W W'
The pressure increases along the wheel from Pe to Ppe Py
being given by
-~ )
Pp =P, ¥ 2(6L + ﬁwc) . (6.43])

The normal stress acting on the wheel 1s (Equation [3.7])

o, = - P +sin 2(¢w -49) . (6.44]
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Since Ty = €08 2(¢w - 6) 1s assumed constant, ﬂw - 8 1s constant

and ow 1s simply equal to the isotropic pressure plus a constant.

For a perfectly smooth wheel (Tw = 0), ﬂw -8 = -7v/4 and

W w

(11) The determinacion of Vg v (kinematics) -

B
Simtlarly to Equations [6.18) and [6.19] we have this

time for Va and v

B

dv v
_a - _B - o
i \/p =0 38 + Va = 0 (6.45]
vy dy

a p- B = 46
R + v, = 0 3236 + Vﬁ =0 . (6.46]

The boundary conditions for the telegraph  Equations (6.46]

are as follows:

- On AB Va and vp satisfy the conditions along a line of

separation between a plastic and a rigid zone (Section iC)

1l + 6V cos @

<
]

@ [6.47]

-sin ¢

<
]

or by Equatlon [6.40]

0 = =-p - 1; for a rough wheel (Tw =1), § -8 =0 and o, = -p.
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1 + 8V cos a

<
]

(on B = O;'BL < g < 0) (6.48]

- On the line BC there 1s no velocity Jump, hence

u, cos = U
a b ¢

<
"

p COS B

& .« o < <
(ona=0; -¢g < p<0)
Vv, = -u_sin @# = -u_ sin B

(6.49)

These conditions completely determine the values of Yo and
vﬁ at any point in the characteristic rectangle ABCB'A of Fig-

ure 13c).

Following the same Riemann method as in Section 6D, va and

v, at a point P(a,B) are given by

B
p" B
Bvo avo
v (P) =[G 55 da -fG TF d8 + G(P,B) v_(B)
B 2 (6.50)
P" B
v dv
vﬁ(P) =fG Taé da -f G 'SFQ- dg + G(P,B) Vﬁ(B)

B p!
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where G, the Green Function, *s

G(aP,BP;a,B) =J, [2 '\/(ap-a)(ﬁp-ﬁ) ] . (6.51]

Using the values of Vo? Vg ON the boundaries (Equations [6,48]
and [6.49]) and the definition of G (Equation [6.51)), Equations
(6.50] become

a B
va(a,ﬁ) = -fJo [2 Vﬁ(a-g)] sin 848 - ubf J. [2 a(p-8 )]sin £dg
) )
g I (2yaB) (6.52]
@ B
vﬁ(a,ﬁ) = -f]o l? V(a-!)ﬁ] cos 8485 - ubeo [2 \/a(ﬁ-!)]cos £d8
o ) (6.53)

For the 1llustration of the method we have selected an ex-
ample with the following data
o}

ea=3o - z = 0.134

o (o} .
gw_ e = ¢wc = _35 M Tw = 0.34,9L = 65 [6.54]

Va and v, have been determined by numerical integration and thelr

B

values for different a and B in the rectangle -QL <a<o0,

gwc < B < 0 are given in Appendix 2.
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The locatlion of the line AC 1s found now by using the con-
dition that AC 1s a streamline and a llne of constant T = Tw
According to Equation [4.8], v, and v, satisfy the condition

B
v
L - tan (g -0) (6.55]
a
or, 1n our example (ﬁw -0 = -350)
v
\_,9_ = tan 35° = 0.7 . [6.56]
a

In the numerical results vﬁ/va has been glven for each point
(Appendix 2) and it was a simple matter to pick from the results
the location of the points which satisfy Equation [6.56). - In
Figure 14 the characteristic plane, including AC, 1s represented
according to the data of Appendix 2.

Once AC 1s known the same Appendix 2 provides the speed
Vv = va° + vﬁa along the wheel. In Figure 15 the velccity varia-
tion along the wheel and along corresponding points (i1.e., on
same a lines) along the separation line AB 1s given graphically.
In Figure 17 the veloclty distribution along a few character-

istics 1s also glven.

The veloclty along the wheel increases from 1ts value at
the leading edge A (V = 1.57) %o 1its value at the bottom B
(Vv = 1.88) and the requirement of positive work 1s satisfled.

i
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The veloclty along the slipline AB 1s somehow higher than the
value on AC. A rough check has shown that the positive work con-
dition (Equation (3.22]) 1s satisfied everywhere in the plastic
zone. The small difference between V on AC and AB for the same

B slipline shows that the distributlon 1s almost uniform on the

B lines, but changes in a direction (Figure 17).

(111) The solution of x,y (geometry) -

Equations [6.8] and [6.9] have been used in order to
map the characteristic region of Figure 15 onto the physical

plané.

Along the wheel AC x and y are known, namely,
X =sin® y = - cos 8 (6.57]

According to Equations [6.7] x and ¥y are given by

X = sin 8 cos ﬁw - cos 8 sin g = - sin (ﬁw -6)
. (6.58]
y = - sin 8 sin ﬁw - cos B cos ¢w = - CcoOS (¢w -08),
But, from the assumption of constant Tw we have
1 -1
¢w -8 = ﬁwc =~ 5cos T (6.59]

Hence, from Equation [6.54]

X = sin 35° § = -cos 35° (On AC)
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With these values of X and y along AC, the Equations [6.8]
and (6.9] have been integrated numerically, by finite differ-
ences. The results, in terms of the mapping of a,8 region ABCA
on x,y plane, are given in Appendix 3. The slipline field has
been plotted graphically in Figure 16. The sliplines are ortho-
gonal, as required by the theory. They intersect the wheel at
the constant angle corresponding to 7 = 0.34 (ﬁw -8 = -35°).

Hence, for the selected example, the plastic flow in the
bow region has been completely solved. The stress distribution
has been determined (Equations [6.40) and [6.42] excepting the
constant pC which has to be found from the matching of bow and

rear plastic regions.

There is no problem, in principle, to find graphically the
streamlines in the bow region, but the work involved 1s quite
tedious., A simpler problem is to depict the velocity distribu-
tion along characteristics, based on the data of Appendices 2
and 3. Such a representation, for the discussed example, 1is
given in Figure 17. Filgure 17 shows that Yy i1s almost uniformly

distributed along the B characteristics, while v, has approxi-

mately a linear variation. This observation mayﬁhelp in con-
structing the kinematical field approximately without solving
the problem in detail. It may be also useful in future work in
which inertial terms inslde the plastic zone or work-hardening

effects would be taken into account.

s o e 8
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E. The Plastic Zone CDERC and the Rigid Core CBDC (Figures 10b
and 18)

The solutlon of the plastic flow in CDERC has to start with
the horizontal envelope of a lines DE. There 1s no systematical

study of such llnes in literature.

Again, the representation of the plastic domain in the char-
acteristic plane has to start with a selection of the character-
istic variables a,8. The zone CDERC is represented in detail in
Figure 18a.

Let a,f in the subregion DQED be the following (Figure 18a):
ay is the distance between D and P" on the base line DF (aP = SP")

and BP is s A one-to-one correspondence 1s thus established

p'’
between points in DQED and the a,B plane. The image of DE in

a,B plane is obviously the line a = B (Figure 18b).

Since # = 0 on this line it 1s easy to ascertain that @ has

the expression

§=a-8 [6.60]

in the domain DQED.

The Equations [6.3], [6.4], [6.8]) and [6.9] become now
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LR (6.61]

A1l the functions v_, Vg, x and y satisfy telegraphic equa-

B
tions of the type

% f
Sa3F f =0 (6.62]

which admits as Green function

G(a:ﬁiapilap) = IO [QV(GP-G)(%) 'ﬁ)] . (6.63)

Hence, all the dependent functions may be found, in principle,

by Riemann's method.

The plastic domain CDQR (Figure 18a) may be represented on
the same a,B plane by selecting as a variable the @ angle on the
base line CD. With @ = a - B the region CDQRC is mapped on the
lower part of the a,B plane (Figure 18b).
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Both images of CR (the wheel) and of RQE (the stress dis-
continuity 1line) in the a,B plane are unknown, including the de-

tachment angle er'

The functions Vor Vgr X0V and the location of CR and RE in

the characteristic planeﬁhave now to be found by using Equa-
tions [6.61] and the boundary conditions. The latter are the
following: (1) On CD the velocity is known (u = U, Vo= 0).
(11) On DE one of the velocity components 1s known, v = vg = 0.
x and y are also known, x =S, y = O. Hence, since @ = s, one
has x = o® + g% = a2, y = 0. (111) On RE the velocity com-

ponents vy Vv have to match continuously the velocity in the

free-surface iegion RETR which have been found previously. More-
over, since RE is a line of stress-discontinulty, it bisects the
angle between the sliplines on its two sides (Figure 18a). This
is an additional condition of matching between the two plastic
zones, (iv) The wheel CR is a streamline and X,y are interre-

lated by the Equation ¥® + y® = 1.

Unfortunately the analytical solution of the problem by
Riemann's method 1s very difficult since the boundary conditions,
unlike the bow and free-surface regions, do not permit to march
with the solution from one boundary. The analytical approach
leads to Integral equations for the dependent functions which
have to be solved by matchlng the solution with the flow in the

free-surface region.

A finite difference solution 1s also difficult because of
the unknown locatlon of CR and RE. For this reason a detailed
solution of the plastic flow in the region CDERD has been abandoned

at this stage. An approximate solution 1s presented in Section 7.
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Finally, the
from the solution
(CB) and from the
side (CD).

The stresses
starting from the
left hand side of

=70-

geometry of the rigid core CBDC is determined
of the flow in the bow region from one side

solution of the flow in CREDR from the other

on CR are found from the solution in CREDC
free-surface where p = 1. The pressure on the

the rigid core at C has to be found from the

equilibrium of the rigid core. When pC is known, the stress dis-

tribution in the bow region is totally determined.
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7. THE APPROXIMATE DETERMINATION OF THE
DETACHMENT ANGLEGI,AND OF STRESS

DISTRIBUTION ALONG THE WHEEL

The detailed solution of the problem of plastic-flow beneath
a wheel, discussed and exemplified in section 6 requires a large
amount of computations. Since the solution is an approxi-
mate one because of the different simplifying assumptions under-
lying the mathematical representation, it is highly desirable to
find a simple, approximate method of determining the forces on

the wheel. Such a method is presented in thls sectilon.

A. The detachment (or recovery) angle® -

8 may be found approximately from the continuity require-
ments between the B line CD and the line RE (Figures 10b and 19).

Since there 1s no soll flow across CR (the wheel) and DE,
the flux through CD and RE have to be equal, 1.e.

R

hub:j/‘ V cos N ds [7.1]

E

Since the mapping of RE on the physical plane 1s not kriown, the
relationship [7.1] 1in 1its exact form 1is of little nhelp. An

approximate evaluation of the integral may be obtained as follows.
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First, Equation [7.1] is equivalent to
R hR
_ cos 1
ubh [V cosndsrf \Y Zox 1 dy (7.2]
B o]

n beilng the angle between the normal to RE and the velocity

vector and £ the angle between the normal and x axis (Fig. 19).

At R 1t 1s reasonable to assume that the stress Jjump is
negligible and RE 1s tangent to the characteristic RF. 1 at R
is l..own since the characteristic RF intersects the free surface
at m/4. Hence Ep = T/4 + 6, while ng = 6 . From the other hand
V at R 1s the speed along the free surface and it has been found
by solving the kinematic problem in RTFR (Section 6c). For each
given Gr, VR may be found in Appendix 1 (in the last line of
each group of results) taking into account that ¢ = T/4 + er at R,
H:nce the integrand of [7.2] has a well determinated value at R,

for a given Gr.

At E again V = u = 1 1s known and there also n = £ since
the velocity vector is horizontal. Thz value of V(cos n/cos ¢)
being known at the two extremities, & reasonable approximation
of the integral [7.2] is obtained by assuming a linear variation
of the integrand with y. Hence, Equation [7.2] becomes
V, cos Gr

1 + R h [7.3]

cos (m/4% + er) i

=

oy

u
|-



HYDRONAUTICS, Incorporated

-73-

A few values of V_ as a function of 6 , from Appendix 1,
R r

are given 1In the following tahle

& *R VR
5,1° 50.1° 1.08
11.2° 56, 25° 1.20
20.2° 65.20° 1.35
27° 72° 1.76
31.5° 76.5° 1.5k
The quantity hp 1 simply related to h (Fig. 19) by
hR =h+ 1 - cos GP [7.4)
Equations [6.35] and [6.37] relate uh to 6 and §,-6 = -0 .

Hence, in Equation [7.3) all quantities are functions of BP, Ga,
and ¢wc and 1t permits the determination of GP (recovery angle)
for given ea (sinkage) and L (shear stress at bow). Equa-

tion [7.3] has been solved by tris. and error. In Figure 20

the dependence of GP on the shear stress on the wheel 1s given

for three sinkages z = 0.036, z = 0.134% and z = 0.293 corresponding
to Qa = 150, Ga = 300 and Ga = u5° respectively. The minimum

sllppage as function of z and T 1s given in Flgure 23,

The examination of Figure 20 shows that GP Increases with
sinkage and with T For small sinkages, as encountered in ap-

plication, and T = O'S’Gr is of order Ga/2.
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B. The Stresses Along RC (Figure 10b)

As stated in Section 5e the shear stress 1s assumed constant

T T along the bow region AC, and dropping linearly along RC

fromt =1 toT =20
W
T=T (1 - e/er) (on RC, 0 < 6 < er) [7.5]

The isotropic pressure at C, on the right side of CD (Fig-
ures 12b and 18a) is found from the integration of Equations [6.1)
and [6.2] along the sliplines RN and NC as

= 4 er) -0, | -2 (ch - ¢wc) [7.6]

the terms 1n brackets belng the variation of ¢ betwcen R-N and
N-C respectively. The value of ¢N is unknown, but 1ts range of
varliation 1s 0 ¢ ¢N < ¢wc’ corresponding to N= D or to N=—= C,
respectisely. Assuming the average value oN = ¢wc/2 we obtain
from Equation [7.6]
Pop = 1+ T/2 + 26, [(7.7]
The normal stress on the wheel at C, on the right side of

CD, is [Equation 3.7)
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L
Oop = = Pop *+ Sin 20 = -(1 + 1 2er)+ sin 20 [7.8]
-1
where ¢ 15 related to T by ¢ = - 1/2 cos T
t+ = kv =
The type of varlation of O from O 0O at R to S Sop at
C is not known. From the assumed slipline distribution 1t is
reasonable to assume a linear variation
6 T 6
S = 9¢p 1 - 5 = - |1 + > + 29r - sin Eowc l - ) )
g g
(on CR, 0 <6< 6) [7.9]

Equations [7.5]) and [7.9]) gave the approximate distribution
of shear and normal stresses along the rear portion of the

wheel CR as a function of 8, GP, and Tw (or equivalently ¢wc).

C. The Equilibrium of the Rigid Core CBDC (Figure 10b)

In the rigid (elastic) core the maximum shearing stress has
to be lesser than the yleld stress anywhere. The shape of the ¢
two lines CB and CD 1s only partlally known. CB 1s known from
the solution of the bow region (Figure 16) while CD has to be
found from the solution of the rear region. Figure 16 shows
that an acceptable approximation 1s to replace the lines CD and
CB by two arcs of circles (Figure 21). The two arcs are com-

pletely determined by the known angles at C(¢w~) and at B and D

-~

2
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(r/2) and by the height h. The isotropic pressure distribution
1s also determined from the B characteristic relationship [6.2]
as (Figure 19)

P =P, "2 -2 (on CB)

[7.10]
P =Py - 20+ en (on CD)
The shearing stress distribution along the three sliplines CB,

BD and DC is also known and given in Figure 21.

All the stresses of Figure 21 are known excepting pcz, the
pressure at C on the left side of CB. The equilibrium of the
forces acting on the rigid case in horizontal direction will

provide the value of pcz.

The horizontal force from the pressures on CD 1s

h ¢
: Twe
H.. = (p.. + 2¢ - 2n)dy = — . (p._+20 -27n)cosndn
CD Cr we sin owc Cr we
o) o)
coSs ®wc 5
“hiPc. ~235ine. " 5in 6 [7.10]
we we

The same type of computation gives for the pressure resultant
on CB

cos ¢
we

2
Lt (pCB *23ne " sin ¢ ) [7.11]
we we
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The resultant of the shearing stresses is

1l - cos ¢
W

= U = ¢
H, = 4 = 4h —— [7.12]
wcC

The equilibrium requires

Hyp + H, - Hop = 0 [7.13]
Introducing the expressions [7.10], [7.11] and [7.12] into [7.13]

and after some algebraic manipulations, 1t is found that

Pey = Pop = Pg [7.14]
i.e. the pressure at C 1s transmitted unchanged though the rigid
core. This shows that the rigid core 1s effectively not 1in a
plastic state, in which case p would increase. Hence from Equa-
tions [7.7] and [7.14]

T

p, =1+ 35+ 26 [7.15]

D. The Stresses Along CA (Figures 10b and l13a)

A method of determining the stress distribution by the exact
integration of the quasi-static equations has been presented 1n
Section 6d. The inspection of Figure 14, which shows the image
of the 1line AC in the characteristic plane, reveals that the

curve may be approximately replaced by a straight segment between
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A and C. The equation of this straightline is (Figure 13c)

%

¢
we

a + B+6, =0 [7.16]

J/

From the other hand ¢, p and 6 are related to a,f by Equa-
tions [6.40]), [6.42] and [6.58]. From these equations and [7.16]
we find that along CA

6 = (1 - —ﬂg) a - ¢
e we
£
¢wc
p=p.-21|1+=—]a [7.17]
C 6
£
¢wc
6 = l-—e—- a
£
Replacing pC by 1ts value of Equation [7.15], p 1s ex-
pressed as function of 6 along the wheel by
¢wc
- 1+ TR
p=l+§+ 29r-2———¢"' - 6 [7018]
we
1 -5
£

where 6z (Figure 13a) 1s related to sinkage and shearing stress

at A through Equation [6.34]

1 =1l
ez = ea + ¢wc = ea + 5 c0s T T [7.19]

- e e R
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Summarizing, the stress distribution along the bow portion

of the wheel 1s given by

T =T, (AC, -Ga < 8 < 0) [7.20]
6 =-p-sin20 =-|1+Z+ 20 + sin 2¢
W we 2 r we
6, + 20
+2—F——#6 (AC,-6_ < 6 <0) [7.21]
a

Equations [7.20] and [7.21] give the stress distribution in

terms of 6, 6 , 6 and 7T
r a W

The last point to be clarified is that of the rigid wedge at
the bow, delimited by the free-surface and the slipline AB
(Figure 13a).

The pressure at A is (from Eguation [7.17] with 8 = -Ga)

e
i
—
+
ST

+ Qer + aea + 4¢wc [7.22]

This result is independent of the assumption of linearity of the

line AC in the characteristic plane.

Hill (9) has shown that the rigid wedge at the bow is ef-
fectively in a rigid (elastic) state if

Py 1+ 3m- 26, [7.23]
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the sign equal corresponding to a plastic state given by a

centered fan at A.

Hence, from Equations [7.22] and [7.23] we find that

5T

< = _ -

6,S 9 -20_ - 30 [7.24]
For er larger than the 1imit of Equation [7.24] the soil at

bow cannot sustain in a rigid state the stresses generated by the

wheel. Then the plastic flow extends upstream causing probably

bulldozing effects.

The application of condition [7.24] to the relationship
between er, ea and ¢ in Figure 20 shows that [7.24] 1is violated
only for the largest sinkage (6, = 45°, z =~ 0.3) and at small
shear stress between the wheel and the soil (low slippage). The
corresponding region is shaded i1n Figure 20. The conclusion is
that the pilcture of steady flow assumed in this work 1s probably
not possible for driven wheels at sinkages larger than z = 0.3.
We have not found in literature [5], [18], [22] examples of tests

in which larger sinkage values have been realized.
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8. FORCES ACTING ON THE WHEEL AND THE
MINIMUM SLIPPAGE COEFFICTENT

Equations [7.5], [7.9], [7.20] and [7.21]) gave the approxi-
mate stress distribution on the wheel., The distribution is
represented in Figure 22 for the example discussed in Section 6
(6, = 30°, z = 0.134, = 359, T, = 0.34). From the diagram
of Figure 20 it ls found that the rec.very angle 1s Gr = 17.20.

The normal stress 1s discontinuous at C, the Jump due to
the rigid core being 2 gin 2¢wc' As the shearing stress on the
wheel increases this Jump diminishes. The normal stress dw has
its maximum value at the bow and drops along the wheel, The
isotropic pressure is continuous along the wheel. For the same
sinkage, but a perfectly rough wheel (Tw = 1) the normal stress
distribution is continuous and Gr is larger, Gr = 230 (Figure 22).
The shearing stress 1is, by assumption, constant along AC and drops

to zero from C to R.

The forces acting on the wheel may be easily found by
integrating the stresses, 6 being the integration variable in
the range -Ga < 6 <« Gr.

A. The Vertical Force W (Flotation, Figure 22)

The vertical force acting on the wheel has four components

W=W, + Wao + Wa + Wy [8.1])
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where W; is the vertical proJjection of the normal stress o
acting on AC, Wz resu’ts from ow on CR, Ws from T on AC and W4
from T on CR. All these components but W4 are directed upward

(positive).

Since dx = cos @ d6 and dy = sin 6d6, the expressions of the
W components, according to Equations [7.5), [7.9], [7.20] and
[7.21] are

° ° s 62 + ¢wc
= = _ = 3 wm WS
Wy 0, dx (1 + S 26, + sin 2¢wc) + 2 5% 6| cos ade
)/ we
A -6
a
T | 62 + Ve
= [1 +T4+ 26 + sin 26 ) sin 6 - 2 z———— (1-6_sinb_-cos 6 )
2 r wc, a 6, - ¢ a a a
)/ we
[8.2]
R 6
r
Wo = - o dx = 1 + X 4026 -sin26 ) (1 - L cos 6d6
2 W 2 r weC er
© o)
- 1 - cos er
=(1+35+2, - sin 20 ) ) [8.3]
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C 0
Wa = -J['dey = - va/1sin 6d6 = 1,2 = CoS 2owc(1-cos 63) [8.4]
A -6
a
R Gr
[‘ P sin GP
Wy = -J Tdy = - ’l.'w(l - 5—) sin 6d6 = cos 2¢‘wc —5 - 4
r r
A 0

[8.5]

Hence, by summation, W 1s expressed in a closed form as a
function of Ga (sinkage), ¢wc or Tw (shearing svtress on the wheel
related to slippage), Gr (recovery angle) ard GE' Since GP is
itself a function of Ga and T (Figure 20) and the same 1s true
for Gz (92 = Ga + ¢WC) the flotation is in fact a function of ea

and Tw solely.

In Figure 23 the dependence of W on Tw and z 1s represénted
graphicai.:y. The values have been obtained by using Figure 20

for finding ép and Eguations [8.2]-[8.5] for W.

The computations show that the major part of W 1s, cf course,
given by Wy. As tne shearing stress Tw and the sinkage z increase,
however, the other components of W may reach as mucr. as 30 per-
cent of its value. The neglection of the rormal sir#sses on the
rear portion as assumed by Bekker, theory. 1is not Justified in

this case.
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As expected W increases sensibly with the sinkage. An in-
teresting feature i1s the drop of W, for a given sinkage, with Tw,
{.e. with the slippage. A computation of an "average" stress ob-
tained by dividing the flotation W to the contact length Ga + Gr’
based on the results of Figures 20 and 23, shows that hvﬁa + Qr)
has an average value of 3.9 (for 15° < Ga < USO,loO <o < 400)

with deviations of maximum t 13 percent.

B. Horizontal Force H (Resistance, Drawbar Pull, Figure 20)

The horizontal force, considered positive if 1t is resistive

and negative, if 1t 1s propulsive, has again four components

H=R + Ho + Hs + Hs [86]
where R results from Uw on AC, Hz from cw on CR, Has from T on
AC and Hs from T on CR (Figure 22).

The expressions of the different components of H are as

follows

C -6
0,+ 40
_J[;wdy i/~(1 + 7/2 + 26, + sin zwwc) +2 55 01 sin 6dd
A 0

R =
£ we
= (1 +w/2+ 26, + sin 2¢wc)(l-cos Ga)
r
92 + ®wc
1 S B (Ga cos 6_ - sin Ga) 18.7]
£ we
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R 2]
r
a3
s = % = - 2 - - (Su— 9 =
Hz J/;wdy J[‘(l + /2 + ‘Gr sin ?®wc) G Gp cos 6d6
C o)
sin Qr
=(1+1T/2+29r—sin a¢wc) —e—r———l (8.8]
C 0
Ha = —./'T dx = -T./~ cos 8d6 = - 1 sin 6 = - cos 2¢ sin 6
w W W a we a
A -8
a
[8.9]
R Gr P cos Qr -1
H4=-f'rdx=—f Twl-e— cos 6dé =71 5
r r
C o]
cos 68 -1
= cos 26 er [8.10]

The force R 1s a resistive one, the other three forces are
propulsive, Again, for a given sinkage and Tw the values of H
may be found through the relationships between Gr and Ga, s
In Figure 24 the value of H as a function of T (or ¢wc) for
different sinkages 1s represented, as well as the value of R.
In usual terminology R 1s the resistance, H 1s the minus draw-

bar-pull and H-R 1is the traction.
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As expected the resicstance increases with the sinkage. For
a given sinkage, both total forces and resistance drop as the
shear stress increases, but the total force drops faster becoming
negative (1.e. drawbar pull) at high values of Tw and low values

of z.

C. The Torque M

The torque acting on the wheel arises only from shearing

stress. It 1s glven, therefore, by

R

M =frd9
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D. The Minimum Slippage

The relationship between the assumed constant 1 = Tw along
the wheel (on AC) and the slippage has been discussed in Sec-
tion 6d. Only a detalled analysis of the boundary layer between
the wheel and the plastic zone may reveal the true nature of this
relationsﬂip. At this moment one may use an emplrical relation-
ship between T _ and S. At any rate, the analysis (Section 6d)
has shown that a minimum slippage 1s necessary 1n order to main-
taln posltive shear stress along the entire wheel. From Equa-

tion [6.39] Sm is given by
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Sin 6
S = & [8.12]

m sinfo_ | + sin 6,

i.e. Sm 1s depending on sinkage and on T (or, otherwise stated

T, depends on Sm and sinkage).

In Figure 23 the dependence of Sm on Tw and z 1s repre-
sented graphically. For a given sinkage Sm increases with T

the increase being very fast at high T, (Tw > 0.8)

Tne flow pattern suggested in thls report for a driven wheel
is possible only for S 2 Sm . At lower slippage coefficlents
the wheel starts to skid. For the small sinkages encountered in
applications and moderate T the required minimum slippage are of
the order 0.35 - 0.40. At lower values the wheel i- no more

totally slippling and a different solutlion has to be contemplated.

For driven wheels without lateral spuds , a slippage coef-
flcient of 0.35 - 0.40 is not high and 1t may be said that the
present solution covers the whole practical range of slippages

for driven wheels (18).
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9. DISCUSSION OF RESULTS

A. Comparison With Experiments (General)

As stated in Section 2b, the existing experimental results
are not adequate for a quantitative verification of the present
work. Adequate experiments for this purpose have to fulfill the
following requirements: (i) the soill behavior has to be con-
trolled and known (homogenedty, stress-strain relationship, in-
compressibility). A soil behaving as close as possible to the
plastic-rigid model has to be used. (ii) the wheel shape and
motion has to be similar to those assumed here, i.e., two-di-
mensional, steady and with correct scaling of the inertial num-
ber H (1ii) accurate measurements of velocity distribution in
the soil body and stress distribution along the wheel have to be

carried out.

Since no experimental data satisfylng these requirements
have been avallable, only a qualitative comparison between the
trends shown by actual experiments and the theory is possible.

Quantitative comparison is also made when possible.

B. The Recovery Angle

For the first time an approximate theoretical method of
predicting the magnitude of the recovery angle Gr has been pre-
sented. The values of Gr seems high when compared with general
accepted values of Gr = 5% _ 6°. One has to keep in mind, how-
ever, that this latter value 1s based on experiments with wheels

of finite width in which case a rut i1s created and part of the



HYDRONAUTICS, Incorporated

-89-

soll 1s moved sidewise. Thus causes, obviously, a reduction of
9r‘ Moreover, if the soill is compressible (as assumed in Bekker's
theory) again smaller values of Qr will be observed.

In the experiment of (18) (Figure 25) done with wide rollers
in clay, values of Gr of 16o have been observed; in (22) Qr seems

to be even higher, so that our results are by no means beyond the

practical range, for the stipulated condition.

The increase of Gr with T’ i.e. with slippage, (Figure 20)
seems intuitively correct. One would expect that at stall Gr
will reach 1its maximum value Gr = Qa. In our results Gr is below
Ga even for Sm — 1., It must be, however, emphasized that the
stall cannot be regarded as a 1limit case of flow and experiments

tend to confirm it (see (21)).

C. The Normal Stress Distribution and the Flotation W

The maximum normal stress 9 has been found at the bow A
(Figure 22 i1s an example). The measurements of (18), (15) show
that high values of ow exist at the bow, contradicting Bekker-
Bernstein assumption (Figure 25). The maximum is close to the
bow in (15), but near the bottom in (18). Experiments in sand

also show that the maximum 1s between the bottom and the bow.

In discussing the work-hardening effect 1t will be shown that
the maximum ow has 1n fact to be displaced from the bow, but it

will be closer to 1t as the slippage increasc<s.
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No stress discontinulty has been observed in the measure-
ments avallable to us, but a gradual drop of ow from the bottom
to the rear has been measured in both (15) and (18) (Figure 25).
The discontinulty 1s acrude approximation for this high drop.

The flotation W (Figure 23) has values of the order found In
(5), being somehow higher. Since the experiments in (5) have
been carrled out wlth narrow wheels, the discrepancy 1s expectable.
An effect observed in the same experiments (5) but ignored by
Bekker's theory and empirically considered by Reece (13) in theory
on wheels 1n sand is the drop of flotation with slippage. The
present theory has predlicted this effect (Figure 23). Moreover,
its reason 1s quite transparent. As Tw, i.e. the slippage, in-
creases, the angle 62 = Ga oo (Figure 13a) decreases and the
slipline AC approaches the wheel. Since the magnitude of the
pressure at the bow A depends on the bending of,this slipline,
the peak value of Oy = GwA decreases as the slipline approaches
the wheel. The above effect may be expressed in a slightly dif-
ferent form by ‘asserting that for a given W the sinkage will in-
crease with slippage.

The normal stress vary along the wheel, which 1s different
of Uffelmann's assumption of constant o (18). The average
normal stress W/(9a + Gr) is of order 39 in the present results
compared with the value of order 5.7 assumed by Uffelmann (18).

Our value is much closer to his measured value of 3.6 (Figure 25).
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D. Reslistance and Drawbar Pull

The high normal stress at rear is the main resistive factor.
Drawbar-pull has been obtained only for small sinkages and high
slippages (Figure 24). No experimental data for rims have been
found, excepting (18).

Experiments with towed wheels tend to show that 1rrespective
of the type of tested soill, the experimental data group satis-
factory in a dlagram in which R/W (resistance over flotation)
are plotted as a function of sinkage. Firth (6) has found from
different measurements for cylindrical wheels that a good fit

for towed rigid wheels 1s

VA 1

2R'

|
!

[9.1]

with K = 0.75 and n = 0.45,

Based on the results of Figures 23 and 25 the values of R/W
as a function of z for different Tw have been plotted on a
logarithmic paper (Figure 26). The dependence 1s well approximated
by straight line which have approximately the same slope of n=0.5.
The value of K differs with slippage, being lower at high slippages.
For Ty = 0.19, 1.e. relatively low shear stress, K = 0.71. Hence,
the present theory provides values quite close to those found for

towed wheels,



HYDRONAUTICS, Incorporated

-92-

E. Influence of Work-Hardening, Compressibility and Side Effects

It is a well established fact that clay shows a dependence
of the yileld stress on the strain which resembles work-hardening,

l.e. an 1increase of the yleld-stress with the strain.

The qualitative influence of the work-hardening has been con-
csidered in different sections. It 1s worthwhile to recall these

effects and to discuss them briefly here.

A first effect is the diffusion of the discontinuity line AC
which becomes a zone of transition rather than a line. At this
stage 1t is difficult to estimate the thickness of the transition
layer, but this may explaln some upstream deformations not en-

countered in a rigid-plastic model.

Another effect is reflected in the normal stress distribu-
tion. Since the pressure increases with strain, it 1s expected
that at the bow A the pressure will be lower than the value given
by the rigid-plastic model and will increase rapidly along the
wheel, reaching the rigid-plastic value in the region of high

strain.

The compressibility of the soil will cause changes in the
low pattern. An apparent effect is the creation of a rut (i.e.

the diminution of er) and additional dissipation in compaction.

A narrow wheel creates a three-dimensional flow pattern.
Experiments (21) show that the flow beneath the wheel exhibits

the same features as in the case of a roller. A rut is now,
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however, possible. For this reason and due to side erfects the

flotation will probably be lower than in the two-dimensional case,.

Future theoretical work which will incorporate these effects

1s suggested in section 11,

F. Energy Considerations

The equation of energy is in the case of an incompressible
material a simpie transcription of the momentum equations
and it is, therefore, not very helpful in the study of the me-
chanics of motion. It is useful for finding, for instance, the
temperature changes in the material-which involves additional

empirical data on thermal properties.

Since 1t 1s usual to express some results found from the
momentum equations in terms of energy, 1t will be worthi-
while to examine briefly the energy balance in the case of soil-
wheel interaction. Considering the soil body (Figure 1), one can
apply the equation of mechanical energy to a control voluume
delimlited by: a vertical section 1-1 far upstream, a vertical
section 2-2 far downstream ( both from the free-surface to
infinity downward), the free-surface and the soil-wheel inter-
face. One of the basic assumptions underlying this work is that
of uniform flow and unperturbed free-surface far from the wheel.

In this case the energy flux through sections 1-1 and 2-2 1is
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at = Vo' [ (9" - 0yt )ay! [9.2]

The free-surface 1s stress-free; there is no energy flow

across it.

Work is done on the soil-wheel interface by shearing stress

solely. The work rate is

% = '
7 Vw [ Tds [9.3]
The energy equation states that
dE dE dEd
L4 == - [9.4]

dt dt ~ dt

where

dEd

at is the rate of energy dissipation.

From the momentum equation

where H' is the total horizontal force acting on the wheel. By
definition

[ 1ds = - M! [9.6]
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where M' 1is the torque acting on the wheel. Also V'w =w'r',

Hence, Equation [9.4] becomes

H'UO' - Mw'r! = — [9.7]

Since in the case of a driven wheel the torque M' 1s applied
to the wheel in clockwise direction, M' < O, H' 1s positive if it

1s a resistance and negative if it 1s a drawbar pull.

Equation [{9.7] states the simple result that the work done
by the horizontal force and the torque are equal to the dissipa-

tion.

Dissipation occurs in the plastic-rigid model 1in the plastilc
zone solely. This zone has to be divided in three regions:
the narrow transition layer between the rigid and plastic zone
(considered a discontinuity layeql the bulk of the plastic zone

and the boundary layer at the soil wheel interface.

The dissipation in the transition layer [[ 7' (dV/9On)dnds
where s and n are directions along and normal to the transition
layer respectively and V' 1s the tangential velocity. For a
perfect plastic material and no inertial effects v' = k' and
[(0V'/On) dn = 8V' (the velocity Jump). The matter is more com-
plex when work hardening and 1nertlal effects are considered,

but 1t will not be discussed here.
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The dissipation 1in the plastic 2one has been discussed 1n
Section 3F.

In the boundary layer near the wheel the dissipation equals
ft'(w'r' - V') ds, where V' is the soll velocity.

In any computations based on energy considerations specilal
attention has to be pald to the dissipation in the two thin layers
whlch may account for a large part of the total dissipation.

G. Extension of the Method to Different Stress Condltions
Along the Wheel

The solution of the plastic flow in the bow region (Sec-
tion 6D) has been obtained by using the condition of constant

shear stress 1 = L along the wheel on AC.

There 1s no major difficulty in solving the problem with
an arbitrary distribution of T along the wheel, provided that
the same picture of the slipline fleld 1is adopted.

In section 64 the T boundary condition was used in order
to locate the image of the line AC in the characteristic plane
(Figure 14).

Assume that a relationship between T and f (position on the

wheel -6 < 6 < 0) is given
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Equation [4.7) relates T to ¢ and 8. Hence, from Equa-

tions [4.7])] and [9.8] we have
t(8) = cos 2 (4-8) [9.9]
which permits to determine ¢-6 along the wheel as a function

of ¢. From the other hand Equations [4.8] which reflects the

fact that the wheel 1s a streamline, gives

= - tg (¢-6) [9.10])

Q<: F®<

Since ¢ 1s related to a, B by Equation [6.40], Vﬁ/va on the
wheel may be computed for a given t(9). The same procedure as
in the case of constant T permits the location of the AC line in

the characteristic plane (Figure 14).

This general procedure applies to frictional conditions, for
instance, in which Tt 1s proportional to Ow' Since o is a known
function of a, B again,is relatively easy to find the points in

the a,B plane which satisfy the assimed condition.

A dependence of T along the wheel on the strain of the
thin plastic laver adJjacent to the wheel may also be treated in
the same way. The strain i1s depending on the difference between
the wheel velocity Vw and the plastic velocity, and the locatlion 6.
If T is a known (say empirical) function of strain, again a re-
lationship between Va and v_ may be formed and the position of

B

AC may be determined.
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Concluding, as long as the stress condition along the wheel
may be translated in a kinematic condition for Va’ Vﬁ’ ¢ - 1t is
relatively easy to solve the plastic flow problem in the bow

region.

At the present stage, because of the lack of sufficlent ex-
perimental or theoretical evidence, 1t seems unJustified to go

beyond the assumption of constant T.

R
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10. SUMMARY AND CONCLUSIONS

A comprehensive theoreticali solution of the soil-wheel
interaction 1is for the first time presented. The soill flow is
steady and two-dimensional, the wheel is cylindrical and rigid.
Only the case of a driven slipping wheel 1s considered. The
soil 1s assumed to be incompressible and to behavelike a rigid-
plastic material, which may be approximately valld in the case

of a soft saturated clay.

The flow of the soil in the region beneath the wheel is
solved by integrating the equations of motion with appropriate
boundary conditions. For the first time the influence of the
inertial terms is discussed. Although the solution 1s obtained
with the aid of the quasi-static equations, the flow field is
built such that inertial influence is taken into account at
discontinulty lines and points where the 1nertial effects are

the most important.

In essence a plastic soil developes high normal stresses
on the wheel, responsible for flotatlon and resistance, in the
following way: The soill flowing beneath the wheel is under-
taking large deformations which cause a plastic flow; in a plastic
region the maximum shear stress is everywhere equal to the yield
stress; the equilibrium of an element moving along curved stream-
lines requires pressure gradients in order to sustain the shear
stress. These pressure gradients build up in high pressures be-

neath the wheel.,
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An approximate solution of the plastic flow problem 1s pre-
sented, The recovery angle, the vertical and horlzontal forces
acting on the wheel are found 1n &n analytical form as functions
of the sinkage and the magnltude of the shear stress on the
wheel boundary. The latter is.related to the minimum slippage
coefficient, necessary to maintaln positive shear stress on the

wheel.

The solution permits for given wheel radius, vertical
load and shear stress on the wheel (or minimum slippage) to de-
termine the sinkage and the horlzontal force. The procedures,
using the analytical expressions or the graphs, 1is the following:
for given vertical load (W') radius (r') yleld stress (k') and
shear stress along the wheel (t'y,) (or minimum slippage Sm) the
sinkage z=z'/r' 1s found from Figure 23. Figure 24 permits the
determination of the resistance R' and the total horizontal

force H! Figure 20 glves the recovery angle Gr.

The results exhibit all the trends well known from experi-
ments (like dependence of flotation on sinkage and slippage),
without using the artificlal empirical assumptions adopted in

previous theorles.

Although some quantitative agreement between the present
theoretical results and measurements has been found, more and
better experiments are necessary in order to vallidate the theory.
For thls reason the present work has to be regarded as a pre-

liminary study.
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The plastic-rigid theory has proved itself as an useful
tool of analysis of soil-wheel interaction. The results so far
obtalned encourage the continuation of theoretical investiga-
tions which will further advance the understanding of the vehicle
dynamics and provide sound foundations to a field of applied me-

chanics dominated by empiricism in the past.
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11. SUGGESTIONS FOR FUTURE INVESTIGATIONS

The review of the literature and the theoretical analysis
carried out in this report suggest some directions of special
interest to be followed in future investigations of soil-wheel

interaction in soft soil.

In a broad sense 1t seems that three directions are of major
importance: (i) work toward a better juantitative characteriza-
tion of different soills important in mobility research A
mechanical characterization means mainly constitutive ejuaticns
relating the stress and strain tensors including straln-rate ef-
fects. The rigid-plastic ejuations represent one of the simplest
types of models. (ii) thorough laboratory work with wheels moving
in carefully prepared and controlled soil with accurate measure-
ments of veloclity field and stresses on the wheel., Experimental
study of the boundary conditions at the soil-wheel interface.
(iii) theoretical work in which the soil-wheel problem is attacked
from basic principles, using existing knowledge. This type of
work has to incorporate new results achieved in directions (i)

and (11).

The work presented here pertains to point (iii). 1In a narrow
sense, the following theoretical aspects of soll-wheel interacvtions,

direct continuations of the present work may be contemplated

(1) Refinement of the solution in order to solve

analytically the flow in the whole plastic region.
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(2) Study of the inertial effects by solving the s=cond
order approximation 1n the perturbation scheme.

(3) Investigation of work-hardening effects.

(4) Extension of solution to towed wheels.

(5) Study of motion in sand soil.

(6) Study of three-dimensional effects for wheels
of finite width.

(7) Study of non-steady effects by incorporating

local accelerations and the time factor in the eguations of flow,

Because of the complexity of the wheel problem we feel that
the best way to estimate the above effects wlill be a study of a
tracked vehicle, which 1s geometrically simpler. We strongly
recommend, therefore, that future work should start with the co-
lution of plastic-rigid flow beneath a track with consideration
of 1inertial, work-hardening, three-dimensionci and unsteady ef-
fects. The next immediate step should be the extenslion to the

wheel problem,
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APPENDIX 1

THE VELOCITY COMPONENTS AND
¢ IN THE FREE - SURFACE REGION
(FIGURE 12) AS FUNCTION OF a,B
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APPENDIX 2

THE VELOCITY COMPONENTS AND ¢ IN
THE BOW PLASTIC REGION (FIGURE 12)
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APPENDIX 3

THE MAPPING OF THE BOW PLASTIC ZONE
(FIGURE 12) FROM THE CHARACTERISTIC PLANE
ON THE PHYSICAL PLANE
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FIGURE 1 - A DRIVEN TWO-DIMENSIONAL WHEEL OVER
A SEMI-INFINITE SOIL BODY



HYDRONAUTICS,INCORPORATED

T'
=
|
] : k'
' e' :
I
k I :
| ! =
(elastic shear=strain) strain ¥ L'*'—— 7"‘—"4' strain Y"
yl

a. IDEAL ELASTIC-PLASTIC MATERIAL b. WORK-HARDENING MATERIAL.
( FOR RIGID-PLASTIC ¥ 'e =0) (FOR RIGID WORK-HARDENING ¥ "=0,

FOR RIGID-PLASTIC ¥ '. =0, y'h = 0)

FIGURE 2 - TH= DEPENDENCE OF THE MAXIMUM SHEAR STRESS ON STRAIN
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FIGURE 3 - STRESS AND VELOCITY COMPONENTS iN CARTESIAN COORDINATES
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FIGURE 4 - STRESSES AT A POINT REFERRED TO DIFFERENT DIRECTIONS
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a. COMPRESSION b. TENSION

FIGURE 5 - PLASTIC FLOW ALONG A FREE SURFACE

a. SLIPPING BOUNDARY

(V>V_), RETARDED FLOW b. SLIPPING BOUNDARY (V >V_ ), ACCELERATED
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c. SKIDDING BOUNDARY (V <Vw)
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FIGURE 6 - PLASTIC FLOW ALONG A RIGID BODY




HYDRONAUTICS,INCORPORATED

tangential velocity
distribution

/

rigid zone

\ plastic zone
e
U. \ Vl
—l \

= o U
oV v Uo cosP
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FIGURE 7 - A LINE OF VELOCITY DISCONTINUITY AT THE BOUNDARY BETWEEN
A RIGID AND A PLASTIC REGION
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a. A CENTERED FAN

b. A CENTERED FAN AT
A CONCAVE CORNER
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c. FLOW DETAIL IN SHEET-DRAWING d. FLOW AS IN c., WITH INERTIAL
(FROM [8p. 173]). AD- DISCON- TERMS CONSIDERED. ( AD - DIS-
TINUITY LINE, DAC - CENTERED FAN CONTINUITY LINE)

FIGURE 8 - FLOW IN A CENTERED FAN AND AT THE INTERSECTION
BETWEEN THE FREE-SURFACE AND A RIGID BODY
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FIGURE 9 - A LINE OF STRESS DISCONTINUITY



HYDRONAUTICS, INCORPORATED

a. FREE -SURFACE AND STREAMLINES

a line

/
shear stress

acting on\t\he wh,/,|<. - X

FREE-SURFACE \\ 40
= A

= === @ line

shear stress acting on
the rigid material

b. SLIP-LINE FIELD

FIGURE 10 - QUALITATIVE REPRESENTATION OF
THE PLASTIC FLOW PATTERN
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FIGURE 11 - AN INCORRECT SLIP-LINE FIELD
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FIGURE 12 - THE FREE-SURFACE REGION
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FIGURE 13 - PLASTIC FLOW IN THE BOW REGION
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FIGURE 16 - THE SLIP-LINE FIELD IN THE BOW REGION (EXAMPLE OF EQUATION 6.53)



HYDRONAUTICS, INCORPORATED

FIGURE 17 - VELOCITY DISTRIBUTION ALONG CHARACTERISTICS
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o. SCHEMATIC SLIP-LINE FIELD /R
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b. CHARACTERISTIC PLANE

FIGURE 18 - THE PLASTIC FLOW IN THE INTERMEDIATE REGION CDERC
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FIGURE 19 - CONTINUITY OF FLOW IN REGION CDERC
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FIGURE 20 - THE DETACHMENT ANGLE 6 . AS FUNCTION OF SINKAGE
AND SHEAR STRESS ON THE WHEEL
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FIGURE 21 - THE EQUILIBRIUM OF THE RIGID CORE CBDC
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FIGURE 23 - FLOTATION AND MINIMUM SLIPPAGE COEFFICIENT AS

FUNCTION OF SINKAGE AND SHEAR STRESS
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VECTOR SCALE DIRECTION

5 10 5101520 OF TRAVEL
[ - - — —— ] S\
PSI \{ MEASURED
wLL RADIAL PRESSURE
(a)
DIRECTION OF TRAVEL
/\46°
LIPOF RUT / SOIL LEVEL
SOIL LEVEL

WHEEL (DRIVEN) - 54" x 12"
LOAD - 6849 |8
SHEAR STRENGTH - 6.61 LB/SQ. IN.

N

N\
MAXIMUM PRESSURE = 35 LB/SQ. IN.

sLip - 30%
AVERAGE PRESSURE = 20 LB/SQ. IN.

' 6849 ]
w o x 180 - 3.6

k' ¢ (9°+9r) 6.61x 27 x 12 x 61 x 3.14

(b)

FIGURE 25 - MEASURED NORMAL STRESS DISTRIBUTION
(a) REF. (15),p. 27 (b) REF. (18), p. 120
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